
林⼦篆

Clojure isn’t Lisp enough
How to use the benefit of s-expression





Benefit of S-expression



))))))))))))))))))))))))))))))))))))))))



Case 1
conditional branch



Case 2
let binding



Case 3
map



What’s wrong?



Case 1(Clojure)
Where is my error reporting?



Case 1(Racket)
Correctly point out error location



Case 2(Clojure)
Bad message



Case 2(Racket)
Better message



Case 3(Clojure)
Bad message



Case 3(Racket)
Point out syntax error



Now we know what go wrong



What can we do?



Rewrite: A new let form



New let form example



What’s macro?



Macro is…

• Text substitution(C)


• Meta substitution(C++ Template)


• Compile-time function, Syntax validator(Clojure)


• A function in higher phase(Racket)


• A function with dynamic scope(f-expr: vau operator)


• Maybe more?



Racket macro: Evolution



syntax-rules (1975)



syntax-case (1988)



syntax-case (improved)



syntax-case (improved): show error



syntax-parse (1993)



syntax-class



syntax-class(improved)



syntax-class(improved): error message



Error selection



Error selection: report message



Macro: implementation



Naive Hygienic Expansion(1986)



The problem of naive Hygienic Expansion

• Unwieldy for recursive definition contexts


• Inefficiently and hard to get correct with “hygiene bending”(e.g. `datum->syntax`)



Binding as sets of scopes



Sets of Scopes: Binding Rule

We can define binding based on subsets: A reference’s 
binding is found as one whose set of scopes is the largest subset 

of the reference’s own scopes (in addition to having the same 
symbolic name).



Sets of Scopes



Sets of Scopes: complex



Sets of Scopes: complex (m) expanded



Macro: development



New definition



Auto complete


