# Complete precategories ```agda module category-theory.complete-precategories where ``` <details><summary>Imports</summary> ```agda open import category-theory.cones-precategories open import category-theory.functors-precategories open import category-theory.limits-precategories open import category-theory.precategories open import category-theory.terminal-objects-precategories open import foundation.universe-levels ``` </details> ## Idea A {{#concept "complete precategory" Agda=is-complete-Precategory}} is a [precategory](category-theory.precategories.md) that has all [limits](category-theory.limits-precategories.md) for diagrams from a specified universe. More precisely, we say that a precategory `D` is `(l1 , l2)`-complete if for any `C : Precategory l1 l2` and any [functor](category-theory.functors-precategories.md) `F : C → D` the type of limits of `F` is inhabited. ## Definition ```agda is-complete-Precategory : (l1 l2 : Level) {l3 l4 : Level} (D : Precategory l3 l4) → UU (lsuc l1 ⊔ lsuc l2 ⊔ l3 ⊔ l4) is-complete-Precategory l1 l2 D = (C : Precategory l1 l2) (F : functor-Precategory C D) → limit-Precategory C D F ```