# Rigid objects in a precategory

```agda
module category-theory.rigid-objects-precategories where
```

<details><summary>Imports</summary>

```agda
open import category-theory.isomorphisms-in-precategories
open import category-theory.precategories

open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.universe-levels
```

</details>

## Idea

A **rigid object** in a [precategory](category-theory.precategories.md) is an
object whose [automorphism group](group-theory.automorphism-groups.md) is
[trivial](group-theory.trivial-groups.md).

## Definitions

### The predicate of being rigid

```agda
module _
  {l1 l2 : Level} (C : Precategory l1 l2) (x : obj-Precategory C)
  where

  is-rigid-obj-prop-Precategory : Prop l2
  is-rigid-obj-prop-Precategory = is-contr-Prop (iso-Precategory C x x)

  is-rigid-obj-Precategory : UU l2
  is-rigid-obj-Precategory = type-Prop is-rigid-obj-prop-Precategory

  is-prop-is-rigid-obj-Precategory : is-prop is-rigid-obj-Precategory
  is-prop-is-rigid-obj-Precategory =
    is-prop-type-Prop is-rigid-obj-prop-Precategory
```

### The type of rigid objects in a precategory

```agda
rigid-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2)  UU (l1  l2)
rigid-obj-Precategory C = Σ (obj-Precategory C) (is-rigid-obj-Precategory C)

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  obj-rigid-obj-Precategory : rigid-obj-Precategory C  obj-Precategory C
  obj-rigid-obj-Precategory = pr1

  is-rigid-rigid-obj-Precategory :
    (x : rigid-obj-Precategory C) 
    is-rigid-obj-Precategory C (obj-rigid-obj-Precategory x)
  is-rigid-rigid-obj-Precategory = pr2
```

## External links

- [rigid object](https://ncatlab.org/nlab/show/rigid+object) at $n$Lab