# Exponentiation of natural numbers

```agda
module elementary-number-theory.exponentiation-natural-numbers where
```

<details><summary>Imports</summary>

```agda
open import commutative-algebra.powers-of-elements-commutative-semirings

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.commutative-semiring-of-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.action-on-identifications-functions
open import foundation.identity-types
```

</details>

## Idea

The exponent `m^n` is the number obtained by multiplying `m` with itself `n`
times.

## Definition

```agda
exp-ℕ :     
exp-ℕ m 0 = 1
exp-ℕ m (succ-ℕ n) = (exp-ℕ m n) *ℕ m

infixr 45 _^ℕ_
_^ℕ_ = exp-ℕ
```

```agda
power-ℕ :     
power-ℕ = power-Commutative-Semiring ℕ-Commutative-Semiring
```

## Properties

### Tarski's high school arithmetic laws for exponentiation

```agda
annihilation-law-exp-ℕ : (n : )  1 ^ℕ n  1
annihilation-law-exp-ℕ zero-ℕ = refl
annihilation-law-exp-ℕ (succ-ℕ n) =
  right-unit-law-mul-ℕ (1 ^ℕ n)  annihilation-law-exp-ℕ n

left-distributive-exp-add-ℕ :
  (x y z : )  x ^ℕ (y +ℕ z)  (x ^ℕ y) *ℕ (x ^ℕ z)
left-distributive-exp-add-ℕ x y zero-ℕ = inv (right-unit-law-mul-ℕ (x ^ℕ y))
left-distributive-exp-add-ℕ x y (succ-ℕ z) =
  ( ap (_*ℕ x) (left-distributive-exp-add-ℕ x y z)) 
  ( associative-mul-ℕ (x ^ℕ y) (x ^ℕ z) x)

right-distributive-exp-mul-ℕ :
  (x y z : )  (x *ℕ y) ^ℕ z  (x ^ℕ z) *ℕ (y ^ℕ z)
right-distributive-exp-mul-ℕ x y zero-ℕ = refl
right-distributive-exp-mul-ℕ x y (succ-ℕ z) =
  ( ap (_*ℕ (x *ℕ y)) (right-distributive-exp-mul-ℕ x y z)) 
  ( interchange-law-mul-mul-ℕ (x ^ℕ z) (y ^ℕ z) x y)

exp-mul-ℕ : (x y z : )  x ^ℕ (y *ℕ z)  (x ^ℕ y) ^ℕ z
exp-mul-ℕ x zero-ℕ z = inv (annihilation-law-exp-ℕ z)
exp-mul-ℕ x (succ-ℕ y) z =
  ( left-distributive-exp-add-ℕ x (y *ℕ z) z) 
  ( ( ap (_*ℕ (x ^ℕ z)) (exp-mul-ℕ x y z)) 
    ( inv (right-distributive-exp-mul-ℕ (x ^ℕ y) x z)))
```

### The exponent `m^n` is always nonzero

```agda
is-nonzero-exp-ℕ :
  (m n : )  is-nonzero-ℕ m  is-nonzero-ℕ (m ^ℕ n)
is-nonzero-exp-ℕ m zero-ℕ p = is-nonzero-one-ℕ
is-nonzero-exp-ℕ m (succ-ℕ n) p =
  is-nonzero-mul-ℕ (m ^ℕ n) m (is-nonzero-exp-ℕ m n p) p
```