# Exponentiation of natural numbers ```agda module elementary-number-theory.exponentiation-natural-numbers where ``` <details><summary>Imports</summary> ```agda open import commutative-algebra.powers-of-elements-commutative-semirings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.commutative-semiring-of-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.identity-types ``` </details> ## Idea The exponent `m^n` is the number obtained by multiplying `m` with itself `n` times. ## Definition ```agda exp-ℕ : ℕ → ℕ → ℕ exp-ℕ m 0 = 1 exp-ℕ m (succ-ℕ n) = (exp-ℕ m n) *ℕ m infixr 45 _^ℕ_ _^ℕ_ = exp-ℕ ``` ```agda power-ℕ : ℕ → ℕ → ℕ power-ℕ = power-Commutative-Semiring ℕ-Commutative-Semiring ``` ## Properties ### Tarski's high school arithmetic laws for exponentiation ```agda annihilation-law-exp-ℕ : (n : ℕ) → 1 ^ℕ n = 1 annihilation-law-exp-ℕ zero-ℕ = refl annihilation-law-exp-ℕ (succ-ℕ n) = right-unit-law-mul-ℕ (1 ^ℕ n) ∙ annihilation-law-exp-ℕ n left-distributive-exp-add-ℕ : (x y z : ℕ) → x ^ℕ (y +ℕ z) = (x ^ℕ y) *ℕ (x ^ℕ z) left-distributive-exp-add-ℕ x y zero-ℕ = inv (right-unit-law-mul-ℕ (x ^ℕ y)) left-distributive-exp-add-ℕ x y (succ-ℕ z) = ( ap (_*ℕ x) (left-distributive-exp-add-ℕ x y z)) ∙ ( associative-mul-ℕ (x ^ℕ y) (x ^ℕ z) x) right-distributive-exp-mul-ℕ : (x y z : ℕ) → (x *ℕ y) ^ℕ z = (x ^ℕ z) *ℕ (y ^ℕ z) right-distributive-exp-mul-ℕ x y zero-ℕ = refl right-distributive-exp-mul-ℕ x y (succ-ℕ z) = ( ap (_*ℕ (x *ℕ y)) (right-distributive-exp-mul-ℕ x y z)) ∙ ( interchange-law-mul-mul-ℕ (x ^ℕ z) (y ^ℕ z) x y) exp-mul-ℕ : (x y z : ℕ) → x ^ℕ (y *ℕ z) = (x ^ℕ y) ^ℕ z exp-mul-ℕ x zero-ℕ z = inv (annihilation-law-exp-ℕ z) exp-mul-ℕ x (succ-ℕ y) z = ( left-distributive-exp-add-ℕ x (y *ℕ z) z) ∙ ( ( ap (_*ℕ (x ^ℕ z)) (exp-mul-ℕ x y z)) ∙ ( inv (right-distributive-exp-mul-ℕ (x ^ℕ y) x z))) ``` ### The exponent `m^n` is always nonzero ```agda is-nonzero-exp-ℕ : (m n : ℕ) → is-nonzero-ℕ m → is-nonzero-ℕ (m ^ℕ n) is-nonzero-exp-ℕ m zero-ℕ p = is-nonzero-one-ℕ is-nonzero-exp-ℕ m (succ-ℕ n) p = is-nonzero-mul-ℕ (m ^ℕ n) m (is-nonzero-exp-ℕ m n p) p ```