# Equality of dependent pair types ```agda module foundation-core.equality-dependent-pair-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.dependent-identifications open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.transport-along-identifications ``` </details> ## Idea An identification `(pair x y) = (pair x' y')` in a dependent pair type `Σ A B` is equivalently described as a pair `pair α β` consisting of an identification `α : x = x'` and an identification `β : (tr B α y) = y'`. ## Definition ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where Eq-Σ : (s t : Σ A B) → UU (l1 ⊔ l2) Eq-Σ s t = Σ (pr1 s = pr1 t) (λ α → dependent-identification B α (pr2 s) (pr2 t)) ``` ## Properties ### The type `Id s t` is equivalent to `Eq-Σ s t` for any `s t : Σ A B` ```agda refl-Eq-Σ : (s : Σ A B) → Eq-Σ s s pr1 (refl-Eq-Σ (pair a b)) = refl pr2 (refl-Eq-Σ (pair a b)) = refl pair-eq-Σ : {s t : Σ A B} → s = t → Eq-Σ s t pair-eq-Σ {s} refl = refl-Eq-Σ s eq-pair-eq-base : {x y : A} {s : B x} (p : x = y) → (x , s) = (y , tr B p s) eq-pair-eq-base refl = refl eq-pair-eq-base' : {x y : A} {t : B y} (p : x = y) → (x , tr B (inv p) t) = (y , t) eq-pair-eq-base' refl = refl eq-pair-eq-fiber : {x : A} {s t : B x} → s = t → (x , s) = (x , t) eq-pair-eq-fiber {x} = ap {B = Σ A B} (pair x) eq-pair-Σ : {s t : Σ A B} (α : pr1 s = pr1 t) → dependent-identification B α (pr2 s) (pr2 t) → s = t eq-pair-Σ refl = eq-pair-eq-fiber eq-pair-Σ' : {s t : Σ A B} → Eq-Σ s t → s = t eq-pair-Σ' p = eq-pair-Σ (pr1 p) (pr2 p) ap-pr1-eq-pair-eq-fiber : {x : A} {s t : B x} (p : s = t) → ap pr1 (eq-pair-eq-fiber p) = refl ap-pr1-eq-pair-eq-fiber refl = refl is-retraction-pair-eq-Σ : (s t : Σ A B) → pair-eq-Σ {s} {t} ∘ eq-pair-Σ' {s} {t} ~ id {A = Eq-Σ s t} is-retraction-pair-eq-Σ (pair x y) (pair .x .y) (pair refl refl) = refl is-section-pair-eq-Σ : (s t : Σ A B) → ((eq-pair-Σ' {s} {t}) ∘ (pair-eq-Σ {s} {t})) ~ id is-section-pair-eq-Σ (pair x y) .(pair x y) refl = refl abstract is-equiv-eq-pair-Σ : (s t : Σ A B) → is-equiv (eq-pair-Σ' {s} {t}) is-equiv-eq-pair-Σ s t = is-equiv-is-invertible ( pair-eq-Σ) ( is-section-pair-eq-Σ s t) ( is-retraction-pair-eq-Σ s t) equiv-eq-pair-Σ : (s t : Σ A B) → Eq-Σ s t ≃ (s = t) pr1 (equiv-eq-pair-Σ s t) = eq-pair-Σ' pr2 (equiv-eq-pair-Σ s t) = is-equiv-eq-pair-Σ s t abstract is-equiv-pair-eq-Σ : (s t : Σ A B) → is-equiv (pair-eq-Σ {s} {t}) is-equiv-pair-eq-Σ s t = is-equiv-is-invertible ( eq-pair-Σ') ( is-retraction-pair-eq-Σ s t) ( is-section-pair-eq-Σ s t) equiv-pair-eq-Σ : (s t : Σ A B) → (s = t) ≃ Eq-Σ s t pr1 (equiv-pair-eq-Σ s t) = pair-eq-Σ pr2 (equiv-pair-eq-Σ s t) = is-equiv-pair-eq-Σ s t η-pair : (t : Σ A B) → (pair (pr1 t) (pr2 t)) = t η-pair t = refl eq-base-eq-pair-Σ : {s t : Σ A B} → (s = t) → (pr1 s = pr1 t) eq-base-eq-pair-Σ p = pr1 (pair-eq-Σ p) dependent-eq-family-eq-pair-Σ : {s t : Σ A B} → (p : s = t) → dependent-identification B (eq-base-eq-pair-Σ p) (pr2 s) (pr2 t) dependent-eq-family-eq-pair-Σ p = pr2 (pair-eq-Σ p) ``` ### Lifting equality to the total space ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where lift-eq-Σ : {x y : A} (p : x = y) (b : B x) → (pair x b) = (pair y (tr B p b)) lift-eq-Σ refl b = refl ``` ### Transport in a family of dependent pair types ```agda tr-Σ : {l1 l2 l3 : Level} {A : UU l1} {a0 a1 : A} {B : A → UU l2} (C : (x : A) → B x → UU l3) (p : a0 = a1) (z : Σ (B a0) (λ x → C a0 x)) → tr (λ a → (Σ (B a) (C a))) p z = pair (tr B p (pr1 z)) (tr (ind-Σ C) (eq-pair-Σ p refl) (pr2 z)) tr-Σ C refl z = refl ``` ### Transport in a family over a dependent pair type ```agda tr-eq-pair-Σ : {l1 l2 l3 : Level} {A : UU l1} {a0 a1 : A} {B : A → UU l2} {b0 : B a0} {b1 : B a1} (C : (Σ A B) → UU l3) (p : a0 = a1) (q : dependent-identification B p b0 b1) (u : C (a0 , b0)) → tr C (eq-pair-Σ p q) u = tr (λ x → C (a1 , x)) q (tr C (eq-pair-Σ p refl) u) tr-eq-pair-Σ C refl refl u = refl ``` ## See also - Equality proofs in cartesian product types are characterized in [`foundation.equality-cartesian-product-types`](foundation.equality-cartesian-product-types.md). - Equality proofs in dependent function types are characterized in [`foundation.equality-dependent-function-types`](foundation.equality-dependent-function-types.md). - Equality proofs in the fiber of a map are characterized in [`foundation.equality-fibers-of-maps`](foundation.equality-fibers-of-maps.md).