# Sections ```agda module foundation-core.sections where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.function-types open import foundation-core.homotopies ``` </details> ## Idea A **section** of a map `f : A → B` consists of a map `s : B → A` equipped with a homotopy `f ∘ s ~ id`. In other words, a section of a map `f` is a right inverse of `f`. For example, every dependent function induces a section of the projection map. Note that unlike retractions, sections don't induce sections on identity types. A map `f` equipped with a section such that all [actions on identifications](foundation.action-on-identifications-functions.md) `ap f : (x = y) → (f x = f y)` come equipped with sections is called a [path split](foundation-core.path-split-maps.md) map. The condition of being path split is equivalent to being an [equivalence](foundation-core.equivalences.md). ## Definition ### The predicate of being a section of a map ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-section : (B → A) → UU l2 is-section g = f ∘ g ~ id ``` ### The type of sections of a map ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where section : UU (l1 ⊔ l2) section = Σ (B → A) (is-section f) map-section : section → B → A map-section = pr1 is-section-map-section : (s : section) → is-section f (map-section s) is-section-map-section = pr2 ``` ## Properties ### If `g ∘ h` has a section then `g` has a section ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (s : section (g ∘ h)) where map-section-left-factor : X → B map-section-left-factor = h ∘ map-section (g ∘ h) s is-section-map-section-left-factor : is-section g map-section-left-factor is-section-map-section-left-factor = pr2 s section-left-factor : section g pr1 section-left-factor = map-section-left-factor pr2 section-left-factor = is-section-map-section-left-factor ``` ### Composites of sections are sections of composites ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (t : section h) (s : section g) where map-section-comp : X → A map-section-comp = map-section h t ∘ map-section g s is-section-map-section-comp : is-section (g ∘ h) map-section-comp is-section-map-section-comp = ( g ·l (is-section-map-section h t ·r map-section g s)) ∙h ( is-section-map-section g s) section-comp : section (g ∘ h) pr1 section-comp = map-section-comp pr2 section-comp = is-section-map-section-comp ``` ### In a commuting triangle `g ∘ h ~ f`, any section of `f` induces a section of `g` In a commuting triangle of the form ```text h A ------> B \ / f\ /g \ / ∨ ∨ X, ``` if `s : X → A` is a section of the map `f` on the left, then `h ∘ s` is a section of the map `g` on the right. Note: In this file we are unable to use the definition of [commuting triangles](foundation-core.commuting-triangles-of-maps.md), because that would result in a cyclic module dependency. We state two versions: one with a homotopy `g ∘ h ~ f`, and the other with a homotopy `f ~ g ∘ h`. Our convention for commuting triangles of maps is that the homotopy is specified in the second way, i.e., as `f ~ g ∘ h`. #### First version, with the commutativity of the triangle opposite to our convention ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H' : g ∘ h ~ f) (s : section f) where map-section-right-map-triangle' : X → B map-section-right-map-triangle' = h ∘ map-section f s is-section-map-section-right-map-triangle' : is-section g map-section-right-map-triangle' is-section-map-section-right-map-triangle' = (H' ·r map-section f s) ∙h is-section-map-section f s section-right-map-triangle' : section g pr1 section-right-map-triangle' = map-section-right-map-triangle' pr2 section-right-map-triangle' = is-section-map-section-right-map-triangle' ``` #### Second version, with the commutativity of the triangle accoring to our convention We state the same result as the previous result, only with the homotopy witnessing the commutativity of the triangle inverted. ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h) (s : section f) where map-section-right-map-triangle : X → B map-section-right-map-triangle = map-section-right-map-triangle' f g h (inv-htpy H) s is-section-map-section-right-map-triangle : is-section g map-section-right-map-triangle is-section-map-section-right-map-triangle = is-section-map-section-right-map-triangle' f g h (inv-htpy H) s section-right-map-triangle : section g section-right-map-triangle = section-right-map-triangle' f g h (inv-htpy H) s ``` ### Composites of sections in commuting triangles are sections In a commuting triangle of the form ```text h A ------> B \ / f\ /g \ / ∨ ∨ X, ``` if `s : X → B` is a section of the map `g` on the right and `t : B → A` is a section of the map `h` on top, then `t ∘ s` is a section of the map `f` on the left. ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h) (t : section h) where map-section-left-map-triangle : section g → X → A map-section-left-map-triangle s = map-section-comp g h t s is-section-map-section-left-map-triangle : (s : section g) → is-section f (map-section-left-map-triangle s) is-section-map-section-left-map-triangle s = ( H ·r map-section-comp g h t s) ∙h ( is-section-map-section-comp g h t s) section-left-map-triangle : section g → section f pr1 (section-left-map-triangle s) = map-section-left-map-triangle s pr2 (section-left-map-triangle s) = is-section-map-section-left-map-triangle s ```