# `0`-Images of maps ```agda module foundation.0-images-of-maps where ``` <details><summary>Imports</summary> ```agda open import foundation.truncation-images-of-maps open import foundation.universe-levels open import foundation-core.truncation-levels ``` </details> ## Idea The {{#concept "0-image" Disambiguation="of a map of types" Agda=0-im}} of a map `f : A → B` is the type ```text 0-im f := Σ (b : B), type-trunc-Set (fiber f b). ``` The map `A → 0-im f` is 0-[connected](foundation.connected-maps.md) and the map `0-im f → B` is 0-[truncated](foundation.truncated-maps.md). ## Definition ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where 0-im : UU (l1 ⊔ l2) 0-im = trunc-im zero-𝕋 f unit-0-im : A → 0-im unit-0-im = unit-trunc-im zero-𝕋 f projection-0-im : 0-im → B projection-0-im = projection-trunc-im zero-𝕋 f ``` ## Properties ### Characterization of the identity type of `0-im f` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where Eq-unit-0-im : A → A → UU (l1 ⊔ l2) Eq-unit-0-im = Eq-unit-trunc-im neg-one-𝕋 f ```