# `0`-Maps ```agda module foundation.0-maps where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.functoriality-dependent-pair-types open import foundation.universe-levels open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.sets open import foundation-core.truncated-maps open import foundation-core.truncation-levels ``` </details> ## Definition Maps `f : A → B` of which the fibers are sets, i.e., 0-truncated types, are called 0-maps. It is shown in [`foundation.faithful-maps`](foundation.faithful-maps.md) that a map `f` is a 0-map if and only if `f` is faithful, i.e., `f` induces embeddings on identity types. ```agda module _ {l1 l2 : Level} where is-0-map : {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-0-map {A} {B} f = (y : B) → is-set (fiber f y) 0-map : (A : UU l1) (B : UU l2) → UU (l1 ⊔ l2) 0-map A B = Σ (A → B) is-0-map map-0-map : {A : UU l1} {B : UU l2} → 0-map A B → A → B map-0-map = pr1 is-0-map-map-0-map : {A : UU l1} {B : UU l2} (f : 0-map A B) → is-0-map (map-0-map f) is-0-map-map-0-map = pr2 ``` ## Properties ### Projections of families of sets are `0`-maps ```agda module _ {l1 l2 : Level} {A : UU l1} where abstract is-0-map-pr1 : {B : A → UU l2} → ((x : A) → is-set (B x)) → is-0-map (pr1 {B = B}) is-0-map-pr1 {B} H x = is-set-equiv (B x) (equiv-fiber-pr1 B x) (H x) pr1-0-map : (B : A → Set l2) → 0-map (Σ A (λ x → type-Set (B x))) A pr1 (pr1-0-map B) = pr1 pr2 (pr1-0-map B) = is-0-map-pr1 (λ x → is-set-type-Set (B x)) ``` ### `0`-maps are closed under homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : f ~ g) where is-0-map-htpy : is-0-map g → is-0-map f is-0-map-htpy = is-trunc-map-htpy zero-𝕋 H ``` ### `0`-maps are closed under composition ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} where is-0-map-comp : (g : B → X) (h : A → B) → is-0-map g → is-0-map h → is-0-map (g ∘ h) is-0-map-comp = is-trunc-map-comp zero-𝕋 is-0-map-left-map-triangle : (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-0-map g → is-0-map h → is-0-map f is-0-map-left-map-triangle = is-trunc-map-left-map-triangle zero-𝕋 ``` ### If a composite is a `0`-map, then so is its right factor ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} where is-0-map-right-factor : (g : B → X) (h : A → B) → is-0-map g → is-0-map (g ∘ h) → is-0-map h is-0-map-right-factor = is-trunc-map-right-factor zero-𝕋 is-0-map-top-map-triangle : (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-0-map g → is-0-map f → is-0-map h is-0-map-top-map-triangle = is-trunc-map-top-map-triangle zero-𝕋 ``` ### Families of `0`-maps induce `0`-maps on total spaces ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} {f : (x : A) → B x → C x} where abstract is-0-map-tot : ((x : A) → is-0-map (f x)) → is-0-map (tot f) is-0-map-tot = is-trunc-map-tot zero-𝕋 ``` ### For any type family over the codomain, a `0`-map induces a `0`-map on total spaces In other words, `0`-maps are stable under pullbacks. We will come to this point when we introduce homotopy pullbacks. ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {f : A → B} (C : B → UU l3) where abstract is-0-map-map-Σ-map-base : is-0-map f → is-0-map (map-Σ-map-base f C) is-0-map-map-Σ-map-base = is-trunc-map-map-Σ-map-base zero-𝕋 C ``` ### The functorial action of `Σ` preserves `0`-maps ```agda module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) {f : A → B} {g : (x : A) → C x → D (f x)} where is-0-map-map-Σ : is-0-map f → ((x : A) → is-0-map (g x)) → is-0-map (map-Σ D f g) is-0-map-map-Σ = is-trunc-map-map-Σ zero-𝕋 D ```