# Cartesian product types ```agda module foundation.cartesian-product-types where open import foundation-core.cartesian-product-types public ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.subuniverses open import foundation.universe-levels open import foundation-core.identity-types open import foundation-core.transport-along-identifications ``` </details> ## Properties ### Transport in a family of cartesian products ```agda tr-product : {l1 l2 : Level} {A : UU l1} {a0 a1 : A} (B C : A → UU l2) (p : a0 = a1) (u : B a0 × C a0) → (tr (λ a → B a × C a) p u) = (pair (tr B p (pr1 u)) (tr C p (pr2 u))) tr-product B C refl u = refl ``` ### Subuniverses closed under cartesian product types ```agda is-closed-under-products-subuniverses : {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : subuniverse l3 l4) (R : subuniverse (l1 ⊔ l3) l5) → UU (lsuc l1 ⊔ l2 ⊔ lsuc l3 ⊔ l4 ⊔ l5) is-closed-under-products-subuniverses {l1} {l2} {l3} P Q R = {X : UU l1} {Y : UU l3} → is-in-subuniverse P X → is-in-subuniverse Q Y → is-in-subuniverse R (X × Y) is-closed-under-products-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → UU (lsuc l1 ⊔ l2) is-closed-under-products-subuniverse P = is-closed-under-products-subuniverses P P P ```