# Coherently idempotent maps ```agda module foundation.coherently-idempotent-maps where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.homotopy-algebra open import foundation.quasicoherently-idempotent-maps open import foundation.split-idempotent-maps open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.propositions open import foundation-core.retractions open import foundation-core.sets ``` </details> ## Idea A {{#concept "coherently idempotent map" Disambiguation="of types" Agda=is-coherently-idempotent}} is an [idempotent](foundation.idempotent-maps.md) map `f : A → A` [equipped](foundation.structure.md) with an infinitely coherent hierarchy of [homotopies](foundation-core.homotopies.md) making it a "homotopy-correct" definition of an idempotent map in Homotopy Type Theory. The infinite coherence condition is given by taking the [sequential limit](foundation.sequential-limits.md) of iterated application of the splitting construction on [quasicoherently idempotent maps](foundation.quasicoherently-idempotent-maps.md) given in {{#cite Shu17}}: ```text is-coherently-idempotent f := Σ (a : ℕ → is-quasicoherently-idempotent f), (Π (n : ℕ), split(aₙ₊₁) ~ aₙ) ``` **Terminology.** Our definition of a _coherently idempotent map_ corresponds to the definition of a _(fully coherent) idempotent map_ in {{#reference Shu17}} and {{#reference Shu14SplittingIdempotents}}. Our definition of an _idempotent map_ corresponds in their terminology to a _pre-idempotent map_. ## Definitions ### The structure on a map of coherent idempotence ```agda is-coherently-idempotent : {l : Level} {A : UU l} → (A → A) → UU l is-coherently-idempotent f = Σ ( ℕ → is-quasicoherently-idempotent f) ( λ a → (n : ℕ) → htpy-is-quasicoherently-idempotent ( is-quasicoherently-idempotent-is-split-idempotent ( is-split-idempotent-is-quasicoherently-idempotent ( a (succ-ℕ n)))) ( a n)) ``` ## See also - [Split idempotent maps](foundation.split-idempotent-maps.md) ## References {{#bibliography}} {{#reference Shu17}} {{#reference Shu14SplittingIdempotents}}