# Decidability of dependent pair types ```agda module foundation.decidable-dependent-pair-types where ``` <details><summary>Imports</summary> ```agda open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.maybe open import foundation.type-arithmetic-coproduct-types open import foundation.type-arithmetic-unit-type open import foundation.universe-levels open import foundation-core.coproduct-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types ``` </details> ## Idea We describe conditions under which dependent sums are decidable. ```agda is-decidable-Σ-coproduct : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A + B → UU l3) → is-decidable (Σ A (C ∘ inl)) → is-decidable (Σ B (C ∘ inr)) → is-decidable (Σ (A + B) C) is-decidable-Σ-coproduct {l1} {l2} {l3} {A} {B} C dA dB = is-decidable-equiv ( right-distributive-Σ-coproduct A B C) ( is-decidable-coproduct dA dB) is-decidable-Σ-Maybe : {l1 l2 : Level} {A : UU l1} {B : Maybe A → UU l2} → is-decidable (Σ A (B ∘ unit-Maybe)) → is-decidable (B exception-Maybe) → is-decidable (Σ (Maybe A) B) is-decidable-Σ-Maybe {l1} {l2} {A} {B} dA de = is-decidable-Σ-coproduct B dA ( is-decidable-equiv ( left-unit-law-Σ (B ∘ inr)) ( de)) is-decidable-Σ-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} {D : B → UU l4} (e : A ≃ B) (f : (x : A) → C x ≃ D (map-equiv e x)) → is-decidable (Σ A C) → is-decidable (Σ B D) is-decidable-Σ-equiv {D = D} e f = is-decidable-equiv' (equiv-Σ D e f) is-decidable-Σ-equiv' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} {D : B → UU l4} (e : A ≃ B) (f : (x : A) → C x ≃ D (map-equiv e x)) → is-decidable (Σ B D) → is-decidable (Σ A C) is-decidable-Σ-equiv' {D = D} e f = is-decidable-equiv (equiv-Σ D e f) ```