# Decidable maps ```agda module foundation.decidable-maps where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.decidable-equality open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.retractions ``` </details> ## Definition A map is said to be decidable if its fibers are decidable types. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-decidable-map : (A → B) → UU (l1 ⊔ l2) is-decidable-map f = (y : B) → is-decidable (fiber f y) ``` ```agda is-decidable-map-retraction : {l1 l2 : Level} {A : UU l1} {B : UU l2} → has-decidable-equality B → (i : A → B) → retraction i → is-decidable-map i is-decidable-map-retraction d i (pair r R) b = is-decidable-iff ( λ (p : i (r b) = b) → pair (r b) p) ( λ t → ap (i ∘ r) (inv (pr2 t)) ∙ (ap i (R (pr1 t)) ∙ pr2 t)) ( d (i (r b)) b) ``` ## Properties ### The map on total spaces induced by a family of decidable embeddings is a decidable embeddings ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} where is-decidable-map-tot : {f : (x : A) → B x → C x} → ((x : A) → is-decidable-map (f x)) → is-decidable-map (tot f) is-decidable-map-tot {f} H x = is-decidable-is-equiv ( is-equiv-map-equiv ( compute-fiber-tot f x)) ( H (pr1 x) (pr2 x)) ```