# Dependent sequences ```agda module foundation.dependent-sequences where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.universe-levels open import foundation-core.function-types ``` </details> ## Idea A **dependent sequence** of elements in a family of types `A : ℕ → UU` is a dependent map `(n : ℕ) → A n`. ## Definition ### Dependent sequences of elements in a family of types ```agda dependent-sequence : {l : Level} → (ℕ → UU l) → UU l dependent-sequence B = (n : ℕ) → B n ``` ### Functorial action on maps of dependent sequences ```agda map-dependent-sequence : {l1 l2 : Level} {A : ℕ → UU l1} {B : ℕ → UU l2} → ((n : ℕ) → A n → B n) → dependent-sequence A → dependent-sequence B map-dependent-sequence f a = map-Π f a ```