# Dependent telescopes ```agda module foundation.dependent-telescopes where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.telescopes open import foundation.universe-levels ``` </details> ## Idea A **dependent telescope** over a [telescope](foundation.telescopes.md) `A` of length `n` is a dependent list of dependent types over each of the entries in `A`. For example, a dependent telescope over the telescope ```text A₀ : 𝒰 l₀ A₁ : A₀ → 𝒰 l₁ A₂ : (x₀ : A₀) → A₁ x₀ → 𝒰 l₂ ``` consists of ```text B₀ : A₀ → 𝒰 k₀ B₁ : (x₀ : A₀) (x₁ : A₁ x₀) → B₀ x₀ → UU k₁ B₂ : (x₀ : A₀) (x₁ : A₁ x₀) (x₂ : A₂ x₀ x₁) (y₀ : B x₀) → B₁ x₀ → UU k₂ ``` ## Definitions ### Dependent telescopes ```agda data dependent-telescope : {l : Level} (k : Level) → {n : ℕ} → telescope l n → UUω where base-dependent-telescope : {l1 k1 : Level} {A : UU l1} → (A → UU k1) → dependent-telescope k1 (base-telescope A) cons-dependent-telescope : {l1 l2 k1 k2 : Level} {n : ℕ} {X : UU l1} {A : X → telescope l2 n} {Y : X → UU k1} (B : (x : X) → Y x → dependent-telescope k2 (A x)) → dependent-telescope (k1 ⊔ k2) (cons-telescope A) ``` ### Expansion of telescopes An **expansion** of a telescope `A` by a dependent telescope `B` over it is a new telescope of the same length as `A`, constructed by taking [dependent pairs](foundation.dependent-pair-types.md) componentwise. ```agda expand-telescope : {l1 l2 : Level} {n : ℕ} {A : telescope l1 n} → dependent-telescope l2 A → telescope (l1 ⊔ l2) n expand-telescope (base-dependent-telescope Y) = base-telescope (Σ _ Y) expand-telescope (cons-dependent-telescope B) = cons-telescope (λ x → expand-telescope (B (pr1 x) (pr2 x))) ``` ### Interleaving telescopes Given a telescope `A` of length `n` and a dependent telescope `B` over it, we can define the **interleaved telescope** whose length is `2n`. ```agda interleave-telescope : {l1 l2 : Level} {n : ℕ} {A : telescope l1 n} → dependent-telescope l2 A → telescope (l1 ⊔ l2) (succ-ℕ (n *ℕ 2)) interleave-telescope (base-dependent-telescope A) = cons-telescope (λ x → base-telescope (A x)) interleave-telescope (cons-dependent-telescope B) = cons-telescope (λ x → cons-telescope λ y → interleave-telescope (B x y)) ``` ### Mapping telescopes Given a telescope `A` and a dependent telescope `B` over it, we can define the **mapping telescope** by taking dependent function types componentwise. ```agda telescope-Π : {l1 l2 : Level} {n : ℕ} {A : telescope l1 n} → dependent-telescope l2 A → telescope (l1 ⊔ l2) n telescope-Π (base-dependent-telescope Y) = base-telescope ((x : _) → Y x) telescope-Π (cons-dependent-telescope B) = cons-telescope (λ x → telescope-Π (B (pr1 x) (pr2 x))) ```