# Descent for the empty type ```agda module foundation.descent-empty-types where ``` <details><summary>Imports</summary> ```agda open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.empty-types open import foundation-core.pullbacks ``` </details> ## Theorem ```agda module _ {l1 l2 l3 : Level} {B : UU l1} {X : UU l2} {C : UU l3} (g : B → X) where cone-empty : is-empty C → (C → B) → cone ex-falso g C pr1 (cone-empty p q) = p pr1 (pr2 (cone-empty p q)) = q pr2 (pr2 (cone-empty p q)) c = ex-falso (p c) abstract descent-empty : (c : cone ex-falso g C) → is-pullback ex-falso g c descent-empty c = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone _ g c ind-empty abstract descent-empty' : (p : C → empty) (q : C → B) → is-pullback ex-falso g (cone-empty p q) descent-empty' p q = descent-empty (cone-empty p q) ```