# Epimorphisms ```agda module foundation.epimorphisms where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.precomposition-functions open import foundation.sections open import foundation.universe-levels open import foundation-core.commuting-squares-of-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.propositional-maps open import foundation-core.propositions open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.codiagonals-of-maps open import synthetic-homotopy-theory.pushouts open import synthetic-homotopy-theory.universal-property-pushouts ``` </details> ## Idea A map `f : A → B` is said to be an **epimorphism** if the precomposition function ```text - ∘ f : (B → X) → (A → X) ``` is an [embedding](foundation-core.embeddings.md) for every type `X`. ## Definitions ### Epimorphisms with respect to a specified universe ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-epimorphism-Level : (l : Level) → (A → B) → UU (l1 ⊔ l2 ⊔ lsuc l) is-epimorphism-Level l f = (X : UU l) → is-emb (precomp f X) ``` ### Epimorphisms ```agda is-epimorphism : (A → B) → UUω is-epimorphism f = {l : Level} → is-epimorphism-Level l f ``` ## Properties ### The codiagonal of an epimorphism is an equivalence If the map `f : A → B` is epi, then the commutative square ```text f A -----> B | | f | | id ∨ ⌜ ∨ B -----> B id ``` is a pushout square. ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (X : UU l3) where is-equiv-diagonal-into-fibers-precomp-is-epimorphism : is-epimorphism f → is-equiv (diagonal-into-fibers-precomp f X) is-equiv-diagonal-into-fibers-precomp-is-epimorphism e = is-equiv-map-section-family ( λ g → (g , refl)) ( λ g → is-proof-irrelevant-is-prop ( is-prop-map-is-emb (e X) (g ∘ f)) ( g , refl)) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where universal-property-pushout-is-epimorphism : is-epimorphism f → universal-property-pushout f f (cocone-codiagonal-map f) universal-property-pushout-is-epimorphism e X = is-equiv-comp ( map-equiv (compute-total-fiber-precomp f X)) ( diagonal-into-fibers-precomp f X) ( is-equiv-diagonal-into-fibers-precomp-is-epimorphism f X e) ( is-equiv-map-equiv (compute-total-fiber-precomp f X)) ``` If the map `f : A → B` is epi, then its codiagonal is an equivalence. ```agda is-equiv-codiagonal-map-is-epimorphism : is-epimorphism f → is-equiv (codiagonal-map f) is-equiv-codiagonal-map-is-epimorphism e = is-equiv-up-pushout-up-pushout f f ( cocone-pushout f f) ( cocone-codiagonal-map f) ( codiagonal-map f) ( compute-inl-codiagonal-map f , compute-inr-codiagonal-map f , compute-glue-codiagonal-map f) ( up-pushout f f) ( universal-property-pushout-is-epimorphism e) is-pushout-is-epimorphism : is-epimorphism f → is-pushout f f (cocone-codiagonal-map f) is-pushout-is-epimorphism = is-equiv-codiagonal-map-is-epimorphism ``` ### A map is an epimorphism if its codiagonal is an equivalence ```agda is-epimorphism-universal-property-pushout-Level : {l : Level} → universal-property-pushout-Level l f f (cocone-codiagonal-map f) → is-epimorphism-Level l f is-epimorphism-universal-property-pushout-Level up-c X = is-emb-is-contr-fibers-values ( precomp f X) ( λ g → is-contr-equiv ( Σ (B → X) (λ h → coherence-square-maps f f h g)) ( compute-fiber-precomp f X g) ( is-contr-fam-is-equiv-map-section-family ( λ h → ( vertical-map-cocone f f ( cocone-map f f (cocone-codiagonal-map f) h)) , ( coherence-square-cocone f f ( cocone-map f f (cocone-codiagonal-map f) h))) ( up-c X) ( g))) is-epimorphism-universal-property-pushout : universal-property-pushout f f (cocone-codiagonal-map f) → is-epimorphism f is-epimorphism-universal-property-pushout up-c = is-epimorphism-universal-property-pushout-Level up-c is-epimorphism-is-equiv-codiagonal-map : is-equiv (codiagonal-map f) → is-epimorphism f is-epimorphism-is-equiv-codiagonal-map e = is-epimorphism-universal-property-pushout ( up-pushout-up-pushout-is-equiv f f ( cocone-pushout f f) ( cocone-codiagonal-map f) ( codiagonal-map f) ( htpy-cocone-map-universal-property-pushout f f ( cocone-pushout f f) ( up-pushout f f) ( cocone-codiagonal-map f)) ( e) ( up-pushout f f)) is-epimorphism-is-pushout : is-pushout f f (cocone-codiagonal-map f) → is-epimorphism f is-epimorphism-is-pushout = is-epimorphism-is-equiv-codiagonal-map ``` ### The class of epimorphisms is closed under composition and has the right cancellation property ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (g : B → C) (f : A → B) where is-epimorphism-comp : is-epimorphism g → is-epimorphism f → is-epimorphism (g ∘ f) is-epimorphism-comp eg ef X = is-emb-comp (precomp f X) (precomp g X) (ef X) (eg X) is-epimorphism-left-factor : is-epimorphism (g ∘ f) → is-epimorphism f → is-epimorphism g is-epimorphism-left-factor ec ef X = is-emb-right-factor (precomp f X) (precomp g X) (ef X) (ec X) ``` ## See also - [Acyclic maps](synthetic-homotopy-theory.acyclic-maps.md) - [Dependent epimorphisms](foundation.dependent-epimorphisms.md) - [Epimorphisms with respect to sets](foundation.epimorphisms-with-respect-to-sets.md) - [Epimorphisms with respect to truncated types](foundation.epimorphisms-with-respect-to-truncated-types.md)