# Equality of cartesian product types ```agda module foundation.equality-cartesian-product-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.transport-along-identifications ``` </details> ## Idea Identifications `Id (pair x y) (pair x' y')` in a cartesian product are equivalently described as pairs of identifications `Id x x'` and `Id y y'`. This provides us with a characterization of the identity type of cartesian product types. ## Definition ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where Eq-product : (s t : A × B) → UU (l1 ⊔ l2) Eq-product s t = ((pr1 s) = (pr1 t)) × ((pr2 s) = (pr2 t)) ``` ## Properties ### The type `Eq-product s t` is equivalent to `Id s t` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where eq-pair' : {s t : A × B} → Eq-product s t → s = t eq-pair' {pair x y} {pair .x .y} (pair refl refl) = refl eq-pair : {s t : A × B} → (pr1 s) = (pr1 t) → (pr2 s) = (pr2 t) → s = t eq-pair p q = eq-pair' (pair p q) pair-eq : {s t : A × B} → s = t → Eq-product s t pr1 (pair-eq α) = ap pr1 α pr2 (pair-eq α) = ap pr2 α is-retraction-pair-eq : {s t : A × B} → ((pair-eq {s} {t}) ∘ (eq-pair' {s} {t})) ~ id is-retraction-pair-eq {pair x y} {pair .x .y} (pair refl refl) = refl is-section-pair-eq : {s t : A × B} → ((eq-pair' {s} {t}) ∘ (pair-eq {s} {t})) ~ id is-section-pair-eq {pair x y} {pair .x .y} refl = refl abstract is-equiv-eq-pair : (s t : A × B) → is-equiv (eq-pair' {s} {t}) is-equiv-eq-pair s t = is-equiv-is-invertible pair-eq is-section-pair-eq is-retraction-pair-eq equiv-eq-pair : (s t : A × B) → Eq-product s t ≃ (s = t) pr1 (equiv-eq-pair s t) = eq-pair' pr2 (equiv-eq-pair s t) = is-equiv-eq-pair s t abstract is-equiv-pair-eq : (s t : A × B) → is-equiv (pair-eq {s} {t}) is-equiv-pair-eq s t = is-equiv-is-invertible eq-pair' is-retraction-pair-eq is-section-pair-eq equiv-pair-eq : (s t : A × B) → (s = t) ≃ Eq-product s t pr1 (equiv-pair-eq s t) = pair-eq pr2 (equiv-pair-eq s t) = is-equiv-pair-eq s t ``` ### Commuting triangles for `eq-pair` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where triangle-eq-pair : {a0 a1 : A} {b0 b1 : B} (p : a0 = a1) (q : b0 = b1) → eq-pair p q = ((eq-pair p refl) ∙ (eq-pair refl q)) triangle-eq-pair refl refl = refl triangle-eq-pair' : {a0 a1 : A} {b0 b1 : B} (p : a0 = a1) (q : b0 = b1) → eq-pair p q = ((eq-pair refl q) ∙ (eq-pair p refl)) triangle-eq-pair' refl refl = refl ``` ### `eq-pair` preserves concatenation ```agda eq-pair-concat : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' x'' : A} {y y' y'' : B} (p : x = x') (p' : x' = x'') (q : y = y') (q' : y' = y'') → ( eq-pair {s = pair x y} {t = pair x'' y''} (p ∙ p') (q ∙ q')) = ( ( eq-pair {s = pair x y} {t = pair x' y'} p q) ∙ ( eq-pair p' q')) eq-pair-concat refl p' refl q' = refl ``` ### `eq-pair` computes in the expected way when the action on paths of the projections is applies ```agda ap-pr1-eq-pair : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' : A} (p : x = x') {y y' : B} (q : y = y') → ap pr1 (eq-pair {s = pair x y} {pair x' y'} p q) = p ap-pr1-eq-pair refl refl = refl ap-pr2-eq-pair : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x x' : A} (p : x = x') {y y' : B} (q : y = y') → ap pr2 (eq-pair {s = pair x y} {pair x' y'} p q) = q ap-pr2-eq-pair refl refl = refl ``` #### Computing transport along a path of the form `eq-pair` ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {a0 a1 : A} {b0 b1 : B} where tr-eq-pair : (C : A × B → UU l3) (p : a0 = a1) (q : b0 = b1) (u : C (a0 , b0)) → tr C (eq-pair p q) u = tr (λ x → C (a1 , x)) q (tr (λ x → C (x , b0)) p u) tr-eq-pair C refl refl u = refl ``` #### Computing transport along a path of the form `eq-pair` When one of the paths is `refl` ```agda left-unit-law-tr-eq-pair : (C : A × B → UU l3) (q : b0 = b1) (u : C (a0 , b0)) → (tr C (eq-pair refl q) u) = tr (λ x → C (a0 , x)) q u left-unit-law-tr-eq-pair C refl u = refl right-unit-law-tr-eq-pair : (C : A × B → UU l3) (p : a0 = a1) (u : C (a0 , b0)) → (tr C (eq-pair p refl) u) = tr (λ x → C (x , b0)) p u right-unit-law-tr-eq-pair C refl u = refl ``` #### Computing transport along a path of the form `eq-pair` when both paths are identical ```agda tr-eq-pair-diagonal : {l1 l2 : Level} {A : UU l1} {a0 a1 : A} (C : A × A → UU l2) (p : a0 = a1) (u : C (a0 , a0)) → tr C (eq-pair p p) u = tr (λ a → C (a , a)) p u tr-eq-pair-diagonal C refl u = refl ``` ## See also - Equality proofs in dependent pair types are characterized in [`foundation.equality-dependent-pair-types`](foundation.equality-dependent-pair-types.md). - Equality proofs in dependent product types are characterized in [`foundation.equality-dependent-function-types`](foundation.equality-dependent-function-types.md). - Equality proofs in coproduct types are characterized in [`foundation.equality-coproduct-types`](foundation.equality-coproduct-types.md).