# Families of equivalences ```agda module foundation.families-of-equivalences where open import foundation-core.families-of-equivalences public ``` <details><summary>Imports</summary> ```agda open import foundation.equivalences open import foundation.universe-levels open import foundation-core.propositions ``` </details> ## Idea A **family of equivalences** is a family ```text eᵢ : A i ≃ B i ``` of [equivalences](foundation-core.equivalences.md). Families of equivalences are also called **fiberwise equivalences**. ## Properties ### Being a fiberwise equivalence is a proposition ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} where is-property-is-fiberwise-equiv : (f : (a : A) → B a → C a) → is-prop (is-fiberwise-equiv f) is-property-is-fiberwise-equiv f = is-prop-Π (λ a → is-property-is-equiv (f a)) ``` ## See also - In [Functoriality of dependent pair types](foundation-core.functoriality-dependent-pair-types.md) we show that a family of maps is a fiberwise equivalence if and only if it induces an equivalence on [total spaces](foundation.dependent-pair-types.md).