# Functorialty of pullbacks ```agda module foundation.functoriality-pullbacks where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.morphisms-cospan-diagrams open import foundation.standard-pullbacks open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.pullbacks ``` </details> ## Idea The construction of the [standard pullback](foundation-core.pullbacks.md) is functorial. ## Definitions ### The functorial action on maps of pullbacks ```agda module _ {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f' : A' → X') (g' : B' → X') where map-standard-pullback : hom-cospan-diagram f' g' f g → standard-pullback f' g' → standard-pullback f g pr1 (map-standard-pullback (hA , _) (a' , _)) = hA a' pr1 (pr2 (map-standard-pullback (hA , hB , _) (a' , b' , _))) = hB b' pr2 (pr2 (map-standard-pullback (hA , hB , hX , HA , HB) (a' , b' , p'))) = HA a' ∙ ap hX p' ∙ inv (HB b') map-is-pullback : {l4 l4' : Level} {C : UU l4} {C' : UU l4'} → (c : cone f g C) (c' : cone f' g' C') → is-pullback f g c → is-pullback f' g' c' → hom-cospan-diagram f' g' f g → C' → C map-is-pullback c c' is-pb-c is-pb-c' h x = map-inv-is-equiv is-pb-c (map-standard-pullback h (gap f' g' c' x)) ``` ## Table of files about pullbacks The following table lists files that are about pullbacks as a general concept. {{#include tables/pullbacks.md}}