# Functoriality of sequential limits ```agda module foundation.functoriality-sequential-limits where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.cones-over-inverse-sequential-diagrams open import foundation.dependent-pair-types open import foundation.inverse-sequential-diagrams open import foundation.morphisms-inverse-sequential-diagrams open import foundation.sequential-limits open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.identity-types ``` </details> ## Idea The construction of the [sequential limit](foundation.sequential-limits.md) is functorial. ## Definitions ### The functorial action on maps of standard sequential limits ```agda module _ {l1 l2 : Level} {A : inverse-sequential-diagram l1} {A' : inverse-sequential-diagram l2} where map-hom-standard-sequential-limit : hom-inverse-sequential-diagram A' A → standard-sequential-limit A' → standard-sequential-limit A pr1 (map-hom-standard-sequential-limit (f , F) (x , H)) n = f n (x n) pr2 (map-hom-standard-sequential-limit (f , F) (x , H)) n = ap (f n) (H n) ∙ F n (x (succ-ℕ n)) map-hom-is-sequential-limit : {l4 l4' : Level} {C : UU l4} {C' : UU l4'} → (c : cone-inverse-sequential-diagram A C) (c' : cone-inverse-sequential-diagram A' C') → is-sequential-limit A c → is-sequential-limit A' c' → hom-inverse-sequential-diagram A' A → C' → C map-hom-is-sequential-limit c c' is-lim-c is-lim-c' h x = map-inv-is-equiv ( is-lim-c) ( map-hom-standard-sequential-limit h ( gap-inverse-sequential-diagram A' c' x)) ``` ## Table of files about sequential limits The following table lists files that are about sequential limits as a general concept. {{#include tables/sequential-limits.md}}