# Iterated dependent pair types ```agda module foundation.iterated-dependent-pair-types where open import foundation.telescopes public ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.contractible-types ``` </details> ## Idea **Iterated dependent pair types** are defined by iteratively applying the [dependent pair](foundation.dependent-pair-types.md) operator `Σ`. More formally, `iterated-Σ` is defined as an operation `telescope l n → UU l` from the type of [telescopes](foundation.telescopes.md) to the universe of types of universe level `l`. For example, the iterated dependent pair type of the telescope ```text A₀ : 𝒰 l₀ A₁ : A₀ → 𝒰 l₁ A₂ : (x₀ : A₀) → A₁ x₀ → 𝒰 l₂ A₃ : (x₀ : A₀) (x₁ : A₁ x₀) → A₂ x₀ x₁ → 𝒰 l₃ ``` is the dependent pair type ```text Σ A₀ (λ x₀ → Σ (A₁ x₀) (λ x₁ → Σ (A₂ x₀ x₁) (A₃ x₀ x₁))) ``` of universe level `l₀ ⊔ l₁ ⊔ l₂ ⊔ l₃`. ## Definitions ### Iterated dependent products of iterated type families ```agda iterated-Σ : {l : Level} {n : ℕ} → telescope l n → UU l iterated-Σ (base-telescope A) = A iterated-Σ (cons-telescope {X = X} A) = Σ X (λ x → iterated-Σ (A x)) ``` ### Iterated elements of iterated type families ```agda data iterated-element : {l : Level} {n : ℕ} → telescope l n → UUω where base-iterated-element : {l1 : Level} {A : UU l1} → A → iterated-element (base-telescope A) cons-iterated-element : {l1 l2 : Level} {n : ℕ} {X : UU l1} {Y : X → telescope l2 n} → (x : X) → iterated-element (Y x) → iterated-element (cons-telescope Y) ``` ### Iterated pairing ```agda iterated-pair : {l : Level} {n : ℕ} {A : telescope l n} → iterated-element A → iterated-Σ A iterated-pair (base-iterated-element x) = x pr1 (iterated-pair (cons-iterated-element y a)) = y pr2 (iterated-pair (cons-iterated-element y a)) = iterated-pair a ``` ## Properties ### Contractiblity of iterated Σ-types ```agda is-contr-Σ-telescope : {l : Level} {n : ℕ} → telescope l n → UU l is-contr-Σ-telescope (base-telescope A) = is-contr A is-contr-Σ-telescope (cons-telescope {X = X} A) = (is-contr X) × (Σ X (λ x → is-contr-Σ-telescope (A x))) is-contr-iterated-Σ : {l : Level} (n : ℕ) {{A : telescope l n}} → is-contr-Σ-telescope A → is-contr (iterated-Σ A) is-contr-iterated-Σ .0 {{base-telescope A}} is-contr-A = is-contr-A is-contr-iterated-Σ ._ {{cons-telescope A}} (is-contr-X , x , H) = is-contr-Σ is-contr-X x (is-contr-iterated-Σ _ {{A x}} H) ``` ### Contractiblity of iterated Σ-types without choice of contracting center ```agda is-contr-Σ-telescope' : {l : Level} {n : ℕ} → telescope l n → UU l is-contr-Σ-telescope' (base-telescope A) = is-contr A is-contr-Σ-telescope' (cons-telescope {X = X} A) = (is-contr X) × ((x : X) → is-contr-Σ-telescope' (A x)) is-contr-iterated-Σ' : {l : Level} (n : ℕ) {{A : telescope l n}} → is-contr-Σ-telescope' A → is-contr (iterated-Σ A) is-contr-iterated-Σ' .0 {{base-telescope A}} is-contr-A = is-contr-A is-contr-iterated-Σ' ._ {{cons-telescope A}} (is-contr-X , H) = is-contr-Σ' is-contr-X (λ x → is-contr-iterated-Σ' _ {{A x}} (H x)) ``` ## See also - [Iterated Π-types](foundation.iterated-dependent-product-types.md)