# The law of excluded middle ```agda module foundation.law-of-excluded-middle where ``` <details><summary>Imports</summary> ```agda open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.decidable-propositions open import foundation-core.negation open import foundation-core.propositions open import univalent-combinatorics.2-element-types ``` </details> ## Idea The {{#concept "law of excluded middle" Agda=LEM}} asserts that any [proposition](foundation-core.propositions.md) `P` is [decidable](foundation.decidable-types.md). ## Definition ```agda LEM : (l : Level) → UU (lsuc l) LEM l = (P : Prop l) → is-decidable (type-Prop P) ``` ## Properties ### Given LEM, we obtain a map from the type of propositions to the type of decidable propositions ```agda decidable-prop-Prop : {l : Level} → LEM l → Prop l → Decidable-Prop l pr1 (decidable-prop-Prop lem P) = type-Prop P pr1 (pr2 (decidable-prop-Prop lem P)) = is-prop-type-Prop P pr2 (pr2 (decidable-prop-Prop lem P)) = lem P ``` ### The unrestricted law of excluded middle does not hold ```agda abstract no-global-decidability : {l : Level} → ¬ ((X : UU l) → is-decidable X) no-global-decidability {l} d = is-not-decidable-type-2-Element-Type (λ X → d (pr1 X)) ```