# The lesser limited principle of omniscience ```agda module foundation.lesser-limited-principle-of-omniscience where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.disjunction open import foundation.universe-levels open import foundation-core.fibers-of-maps open import foundation-core.propositions open import foundation-core.sets open import univalent-combinatorics.standard-finite-types ``` </details> ## Statement The **lesser limited principle of omniscience** asserts that for any sequence `f : ℕ → Fin 2` containing at most one `1`, either `f n = 0` for all even `n` or `f n = 0` for all odd `n`. ```agda LLPO : UU lzero LLPO = (f : ℕ → Fin 2) → is-prop (fiber f (one-Fin 1)) → type-disjunction-Prop ( Π-Prop ℕ ( λ n → function-Prop (is-even-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1)))) ( Π-Prop ℕ ( λ n → function-Prop (is-odd-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1)))) ``` ## See also - [The principle of omniscience](foundation.principle-of-omniscience.md) - [The limited principle of omniscience](foundation.limited-principle-of-omniscience.md) - [The weak limited principle of omniscience](foundation.weak-limited-principle-of-omniscience.md)