# Multivariable correspondences ```agda module foundation.multivariable-correspondences where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.universe-levels open import univalent-combinatorics.standard-finite-types ``` </details> ## Idea Consider a family of types `A` indexed by `Fin n`. An `n`-ary correspondence of tuples `(x₁,...,x_n)` where `x_i : A_i` is a type family over `(i : Fin n) → A i`. ## Definition ```agda multivariable-correspondence : {l1 : Level} (l2 : Level) (n : ℕ) (A : Fin n → UU l1) → UU (l1 ⊔ lsuc l2) multivariable-correspondence l2 n A = ((i : Fin n) → A i) → UU l2 ```