# Noncontractible types ```agda module foundation.noncontractible-types where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.empty-types open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.negation ``` </details> ## Idea A type `X` is noncontractible if it comes equipped with an element of type `¬ (is-contr X)`. ## Definitions ### The negation of being contractible ```agda is-not-contractible : {l : Level} → UU l → UU l is-not-contractible X = ¬ (is-contr X) ``` ### A positive formulation of being noncontractible Noncontractibility is a more positive way to prove that a type is not contractible. When `A` is noncontractible in the following sense, then it is apart from the unit type. ```agda is-noncontractible' : {l : Level} (A : UU l) → ℕ → UU l is-noncontractible' A zero-ℕ = is-empty A is-noncontractible' A (succ-ℕ k) = Σ A (λ x → Σ A (λ y → is-noncontractible' (x = y) k)) is-noncontractible : {l : Level} (A : UU l) → UU l is-noncontractible A = Σ ℕ (is-noncontractible' A) ``` ## Properties ### Empty types are not contractible ```agda is-not-contractible-is-empty : {l : Level} {X : UU l} → is-empty X → is-not-contractible X is-not-contractible-is-empty H C = H (center C) is-not-contractible-empty : is-not-contractible empty is-not-contractible-empty = is-not-contractible-is-empty id ``` ### Noncontractible types are not contractible ```agda is-not-contractible-is-noncontractible : {l : Level} {X : UU l} → is-noncontractible X → is-not-contractible X is-not-contractible-is-noncontractible ( pair zero-ℕ H) = is-not-contractible-is-empty H is-not-contractible-is-noncontractible (pair (succ-ℕ n) (pair x (pair y H))) C = is-not-contractible-is-noncontractible (pair n H) (is-prop-is-contr C x y) ```