# Product decompositions ```agda module foundation.product-decompositions where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences ``` </details> ## Definitions ### Binary product decomposition ```agda module _ {l1 : Level} (l2 l3 : Level) (X : UU l1) where binary-product-Decomposition : UU (l1 ⊔ lsuc l2 ⊔ lsuc l3) binary-product-Decomposition = Σ (UU l2) (λ A → Σ (UU l3) (λ B → X ≃ (A × B))) module _ {l1 l2 l3 : Level} {X : UU l1} (d : binary-product-Decomposition l2 l3 X) where left-summand-binary-product-Decomposition : UU l2 left-summand-binary-product-Decomposition = pr1 d right-summand-binary-product-Decomposition : UU l3 right-summand-binary-product-Decomposition = pr1 (pr2 d) matching-correspondence-binary-product-Decomposition : X ≃ ( left-summand-binary-product-Decomposition × right-summand-binary-product-Decomposition) matching-correspondence-binary-product-Decomposition = pr2 (pr2 d) ```