# Products of binary relations ```agda module foundation.products-binary-relations where ``` <details><summary>Imports</summary> ```agda open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.propositions ``` </details> ## Idea Given two relations `R` and `S`, their product is given by `(R × S) (a , b) (a' , b')` iff `R a a'` and `S b b'`. ## Definition ### The product of two relations ```agda module _ {l1 l2 l3 l4 : Level} {A : UU l1} (R : Relation-Prop l2 A) {B : UU l3} (S : Relation-Prop l4 B) where product-Relation-Prop : Relation-Prop (l2 ⊔ l4) (A × B) product-Relation-Prop (a , b) (a' , b') = product-Prop ( R a a') ( S b b') ```