# Products of binary relations

```agda
module foundation.products-binary-relations where
```

<details><summary>Imports</summary>

```agda
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.cartesian-product-types
open import foundation-core.propositions
```

</details>

## Idea

Given two relations `R` and `S`, their product is given by
`(R × S) (a , b) (a' , b')` iff `R a a'` and `S b b'`.

## Definition

### The product of two relations

```agda
module _
  {l1 l2 l3 l4 : Level}
  {A : UU l1} (R : Relation-Prop l2 A)
  {B : UU l3} (S : Relation-Prop l4 B)
  where

  product-Relation-Prop :
    Relation-Prop (l2  l4) (A × B)
  product-Relation-Prop (a , b) (a' , b') =
    product-Prop
      ( R a a')
      ( S b b')
```