# Reflexive relations ```agda module foundation.reflexive-relations where ``` <details><summary>Imports</summary> ```agda open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.identity-types ``` </details> ## Idea A {{#concept "reflexive relation" Agda=Reflexive-Relation}} on a type `A` is a type-valued [binary relation](foundation.binary-relations.md) `R : A → A → 𝒰` [equipped](foundation.structure.md) with a proof `r : (x : A) → R x x`. ## Definitions ### Reflexive relations ```agda Reflexive-Relation : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) Reflexive-Relation l2 A = Σ (Relation l2 A) (λ R → is-reflexive R) module _ {l1 l2 : Level} {A : UU l1} (R : Reflexive-Relation l2 A) where rel-Reflexive-Relation : Relation l2 A rel-Reflexive-Relation = pr1 R is-reflexive-Reflexive-Relation : is-reflexive rel-Reflexive-Relation is-reflexive-Reflexive-Relation = pr2 R ``` ### The identity reflexive relation on a type ```agda Id-Reflexive-Relation : {l : Level} (A : UU l) → Reflexive-Relation l A Id-Reflexive-Relation A = (Id , (λ x → refl)) ```