# The type theoretic replacement axiom ```agda module foundation.replacement where ``` <details><summary>Imports</summary> ```agda open import foundation.images open import foundation.locally-small-types open import foundation.universe-levels open import foundation-core.small-types ``` </details> ## Idea The **type theoretic replacement axiom** asserts that the [image](foundation.images.md) of a map `f : A → B` from a [small type](foundation-core.small-types.md) `A` into a [locally small type](foundation.locally-small-types.md) `B` is small. ## Statement ```agda instance-replacement : (l : Level) {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (lsuc l ⊔ l1 ⊔ l2) instance-replacement l {A = A} {B} f = is-small l A → is-locally-small l B → is-small l (im f) replacement-axiom-Level : (l l1 l2 : Level) → UU (lsuc l ⊔ lsuc l1 ⊔ lsuc l2) replacement-axiom-Level l l1 l2 = {A : UU l1} {B : UU l2} (f : A → B) → instance-replacement l f replacement-axiom : UUω replacement-axiom = {l l1 l2 : Level} → replacement-axiom-Level l l1 l2 ``` ## Postulate ```agda postulate replacement : replacement-axiom ``` ```agda replacement' : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-locally-small l1 B → is-small l1 (im f) replacement' f = replacement f is-small' ``` ## References - Theorem 4.6 in {{#cite Rij17}}. - Section 2.19 in {{#cite SymmetryBook}}. {{#bibliography}}