# Σ-decompositions of types into types in a subuniverse ```agda module foundation.sigma-decomposition-subuniverse where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.relaxed-sigma-decompositions open import foundation.subuniverses open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.propositions ``` </details> ## Idea Consider a subuniverse `P` and a type `A` in `P`. A **Σ-decomposition** of `A` into types in `P` consists of a type `X` in `P` and a family `Y` of types in `P` indexed over `X`, equipped with an equivalence ```text A ≃ Σ X Y. ``` ## Definition ### The predicate of being a Σ-decomposition in a subuniverse ```agda is-in-subuniverse-Σ-Decomposition : {l1 l2 l3 : Level} (P : subuniverse l1 l2) {A : UU l3} → Relaxed-Σ-Decomposition l1 l1 A → UU (l1 ⊔ l2) is-in-subuniverse-Σ-Decomposition P D = ( is-in-subuniverse P (indexing-type-Relaxed-Σ-Decomposition D)) × ( ( x : indexing-type-Relaxed-Σ-Decomposition D) → ( is-in-subuniverse P (cotype-Relaxed-Σ-Decomposition D x))) ``` ### Σ-decompositions in a subuniverse ```agda Σ-Decomposition-Subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → type-subuniverse P → UU (lsuc l1 ⊔ l2) Σ-Decomposition-Subuniverse P A = Σ ( type-subuniverse P) ( λ X → Σ ( fam-subuniverse P (inclusion-subuniverse P X)) ( λ Y → inclusion-subuniverse P A ≃ Σ ( inclusion-subuniverse P X) ( λ x → inclusion-subuniverse P (Y x)))) module _ {l1 l2 : Level} (P : subuniverse l1 l2) (A : type-subuniverse P) (D : Σ-Decomposition-Subuniverse P A) where subuniverse-indexing-type-Σ-Decomposition-Subuniverse : type-subuniverse P subuniverse-indexing-type-Σ-Decomposition-Subuniverse = pr1 D indexing-type-Σ-Decomposition-Subuniverse : UU l1 indexing-type-Σ-Decomposition-Subuniverse = inclusion-subuniverse P subuniverse-indexing-type-Σ-Decomposition-Subuniverse is-in-subuniverse-indexing-type-Σ-Decomposition-Subuniverse : type-Prop (P indexing-type-Σ-Decomposition-Subuniverse) is-in-subuniverse-indexing-type-Σ-Decomposition-Subuniverse = pr2 subuniverse-indexing-type-Σ-Decomposition-Subuniverse subuniverse-cotype-Σ-Decomposition-Subuniverse : fam-subuniverse P indexing-type-Σ-Decomposition-Subuniverse subuniverse-cotype-Σ-Decomposition-Subuniverse = pr1 (pr2 D) cotype-Σ-Decomposition-Subuniverse : (indexing-type-Σ-Decomposition-Subuniverse → UU l1) cotype-Σ-Decomposition-Subuniverse X = inclusion-subuniverse P (subuniverse-cotype-Σ-Decomposition-Subuniverse X) is-in-subuniverse-cotype-Σ-Decomposition-Subuniverse : ((x : indexing-type-Σ-Decomposition-Subuniverse) → type-Prop (P (cotype-Σ-Decomposition-Subuniverse x))) is-in-subuniverse-cotype-Σ-Decomposition-Subuniverse x = pr2 (subuniverse-cotype-Σ-Decomposition-Subuniverse x) matching-correspondence-Σ-Decomposition-Subuniverse : inclusion-subuniverse P A ≃ Σ ( indexing-type-Σ-Decomposition-Subuniverse) ( λ x → cotype-Σ-Decomposition-Subuniverse x) matching-correspondence-Σ-Decomposition-Subuniverse = pr2 (pr2 D) ``` ## Properties ### The type of Σ-decompositions in a subuniverse is equivalent to the total space of `is-in-subuniverse-Σ-Decomposition` ```agda map-equiv-total-is-in-subuniverse-Σ-Decomposition : {l1 l2 : Level} (P : subuniverse l1 l2) (A : type-subuniverse P) → Σ-Decomposition-Subuniverse P A → Σ ( Relaxed-Σ-Decomposition l1 l1 (inclusion-subuniverse P A)) ( is-in-subuniverse-Σ-Decomposition P) map-equiv-total-is-in-subuniverse-Σ-Decomposition P A D = ( indexing-type-Σ-Decomposition-Subuniverse P A D , ( cotype-Σ-Decomposition-Subuniverse P A D , matching-correspondence-Σ-Decomposition-Subuniverse P A D)) , ( is-in-subuniverse-indexing-type-Σ-Decomposition-Subuniverse P A D , is-in-subuniverse-cotype-Σ-Decomposition-Subuniverse P A D) map-inv-equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-Subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) (A : type-subuniverse P) → Σ ( Relaxed-Σ-Decomposition l1 l1 (inclusion-subuniverse P A)) ( is-in-subuniverse-Σ-Decomposition P) → Σ-Decomposition-Subuniverse P A map-inv-equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-Subuniverse P A X = ( ( indexing-type-Relaxed-Σ-Decomposition (pr1 X) , (pr1 (pr2 X))) , ( (λ x → cotype-Relaxed-Σ-Decomposition (pr1 X) x , pr2 (pr2 X) x) , matching-correspondence-Relaxed-Σ-Decomposition (pr1 X))) equiv-total-is-in-subuniverse-Σ-Decomposition : {l1 l2 : Level} (P : subuniverse l1 l2) (A : type-subuniverse P) → ( Σ-Decomposition-Subuniverse P A) ≃ ( Σ ( Relaxed-Σ-Decomposition l1 l1 (inclusion-subuniverse P A)) ( is-in-subuniverse-Σ-Decomposition P)) pr1 (equiv-total-is-in-subuniverse-Σ-Decomposition P A) = map-equiv-total-is-in-subuniverse-Σ-Decomposition P A pr2 (equiv-total-is-in-subuniverse-Σ-Decomposition P A) = is-equiv-is-invertible ( map-inv-equiv-Relaxed-Σ-Decomposition-Σ-Decomposition-Subuniverse P A) ( refl-htpy) ( refl-htpy) ```