# Small maps ```agda module foundation.small-maps where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.locally-small-types open import foundation.retracts-of-maps open import foundation.split-idempotent-maps open import foundation.universe-levels open import foundation-core.fibers-of-maps open import foundation-core.propositions open import foundation-core.small-types ``` </details> ## Idea A map is said to be {{#concept "small" Disambiguation="map of types" Agda=is-small-map}} if its [fibers](foundation-core.fibers-of-maps.md) are [small](foundation-core.small-types.md). More specifically, a map `f : A → B` is _small_ with respect to a universe `𝒰` if, for every `b : B`, the fiber of `f` over `y` ```text fiber f b ≐ Σ (x : A), (f x = b), ``` is [equivalent](foundation-core.equivalences.md) to a type in `𝒰` that may vary depending on `b`. ## Definition ```agda is-small-map : (l : Level) {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (lsuc l ⊔ l1 ⊔ l2) is-small-map l {B = B} f = (b : B) → is-small l (fiber f b) ``` ## Properties ### Any map between small types is small ```agda abstract is-small-fiber : {l l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-small l A → is-small l B → (b : B) → is-small l (fiber f b) is-small-fiber f H K b = is-small-Σ H (λ a → is-locally-small-is-small K (f a) b) ``` ### Being a small map is a property ```agda module _ (l : Level) {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where abstract is-prop-is-small-map : is-prop (is-small-map l f) is-prop-is-small-map = is-prop-Π (λ x → is-prop-is-small l (fiber f x)) is-small-map-Prop : Prop (lsuc l ⊔ l1 ⊔ l2) is-small-map-Prop = is-small-map l f , is-prop-is-small-map ``` ### Small maps are closed under retracts ```agda module _ {l1 l2 l3 l4 l : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {f : A → B} {g : X → Y} (R : f retract-of-map g) where is-small-map-retract : is-small-map l g → is-small-map l f is-small-map-retract is-small-g b = is-small-retract ( is-small-g (map-codomain-inclusion-retract-map f g R b)) ( retract-fiber-retract-map f g R b) ```