# Structure ```agda module foundation.structure where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.univalence open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.identity-types open import foundation-core.transport-along-identifications ``` </details> ## Idea Given a type family `P` on the universe, a **`P`-structured type** consists of a type `A` equipped with an element of type `P A`. ## Definition ```agda structure : {l1 l2 : Level} (P : UU l1 → UU l2) → UU (lsuc l1 ⊔ l2) structure {l1} P = Σ (UU l1) P fam-structure : {l1 l2 l3 : Level} (P : UU l1 → UU l2) (A : UU l3) → UU (lsuc l1 ⊔ l2 ⊔ l3) fam-structure P A = A → structure P structure-map : {l1 l2 l3 : Level} (P : UU (l1 ⊔ l2) → UU l3) {A : UU l1} {B : UU l2} (f : A → B) → UU (l2 ⊔ l3) structure-map P {A} {B} f = (b : B) → P (fiber f b) hom-structure : {l1 l2 l3 : Level} (P : UU (l1 ⊔ l2) → UU l3) → UU l1 → UU l2 → UU (l1 ⊔ l2 ⊔ l3) hom-structure P A B = Σ (A → B) (structure-map P) ``` ## Properties ### Having structure is closed under equivalences ```agda has-structure-equiv : {l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P X → P Y has-structure-equiv P e = tr P (eq-equiv e) has-structure-equiv' : {l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P Y → P X has-structure-equiv' P e = tr P (inv (eq-equiv e)) ```