# Transport along identifications ```agda module foundation.transport-along-identifications where open import foundation-core.transport-along-identifications public ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types ``` </details> ## Idea Given a type family `B` over `A`, an [identification](foundation-core.identity-types.md) `p : x = y` in `A` and an element `b : B x`, we can [**transport**](foundation-core.transport-along-identifications.md) the element `b` along the identification `p` to obtain an element `tr B p b : B y`. The fact that `tr B p` is an [equivalence](foundation-core.equivalences.md) is recorded on this page. ## Properties ### Transport is an equivalence ```agda module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) {x y : A} where inv-tr : x = y → B y → B x inv-tr p = tr B (inv p) is-retraction-inv-tr : (p : x = y) → inv-tr p ∘ tr B p ~ id is-retraction-inv-tr refl b = refl is-section-inv-tr : (p : x = y) → tr B p ∘ inv-tr p ~ id is-section-inv-tr refl b = refl is-equiv-tr : (p : x = y) → is-equiv (tr B p) is-equiv-tr p = is-equiv-is-invertible ( inv-tr p) ( is-section-inv-tr p) ( is-retraction-inv-tr p) equiv-tr : x = y → B x ≃ B y pr1 (equiv-tr p) = tr B p pr2 (equiv-tr p) = is-equiv-tr p ``` ### Transporting along `refl` is the identity equivalence ```agda equiv-tr-refl : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) {x : A} → equiv-tr B refl = id-equiv {A = B x} equiv-tr-refl B = refl ``` ### Computing transport of loops ```agda tr-loop : {l1 : Level} {A : UU l1} {a0 a1 : A} (p : a0 = a1) (q : a0 = a0) → tr (λ y → y = y) p q = (inv p ∙ q) ∙ p tr-loop refl q = inv right-unit ```