# Transposition of span diagrams ```agda module foundation.transposition-span-diagrams where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.opposite-spans open import foundation.span-diagrams open import foundation.spans open import foundation.universe-levels ``` </details> ## Idea The {{#concept "trasposition" Disambiguation="span diagram" Agda=transposition-span-diagram}} of a [span diagram](foundation.span-diagrams.md) ```text f g A <----- S -----> B ``` is the span diagram ```text g f B <----- S -----> A. ``` In other words, the transposition of a span diagram `(A , B , s)` is the span diagram `(B , A , opposite-span s)` where `opposite-span s` is the [opposite](foundation.opposite-spans.md) of the [span](foundation.spans.md) `s` from `A` to `B`. ## Definitions ### Transposition of span diagrams ```agda module _ {l1 l2 l3 : Level} (𝒮 : span-diagram l1 l2 l3) where transposition-span-diagram : span-diagram l2 l1 l3 pr1 transposition-span-diagram = codomain-span-diagram 𝒮 pr1 (pr2 transposition-span-diagram) = domain-span-diagram 𝒮 pr2 (pr2 transposition-span-diagram) = opposite-span (span-span-diagram 𝒮) ```