# Type arithmetic with dependent function types ```agda module foundation.type-arithmetic-dependent-function-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.functoriality-dependent-function-types open import foundation.type-arithmetic-unit-type open import foundation.unit-type open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.univalence ``` </details> ## Properties ### Unit law when the base type is contractible ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (C : is-contr A) (a : A) where left-unit-law-Π-is-contr : ((a : A) → (B a)) ≃ B a left-unit-law-Π-is-contr = ( left-unit-law-Π ( λ _ → B a)) ∘e ( equiv-Π ( λ _ → B a) ( terminal-map A , is-equiv-terminal-map-is-contr C) ( λ a → equiv-eq (ap B ( eq-is-contr C)))) ``` ### The swap function `((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y)` is an equivalence ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : A → B → UU l3} where swap-Π : ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) swap-Π f y x = f x y module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : A → B → UU l3} where is-equiv-swap-Π : is-equiv (swap-Π {C = C}) is-equiv-swap-Π = is-equiv-is-invertible swap-Π refl-htpy refl-htpy equiv-swap-Π : ((x : A) (y : B) → C x y) ≃ ((y : B) (x : A) → C x y) pr1 equiv-swap-Π = swap-Π pr2 equiv-swap-Π = is-equiv-swap-Π ``` ## See also - Functorial properties of dependent function types are recorded in [`foundation.functoriality-dependent-function-types`](foundation.functoriality-dependent-function-types.md). - Equality proofs in dependent function types are characterized in [`foundation.equality-dependent-function-types`](foundation.equality-dependent-function-types.md). - Arithmetical laws involving cartesian product types are recorded in [`foundation.type-arithmetic-cartesian-product-types`](foundation.type-arithmetic-cartesian-product-types.md). - Arithmetical laws involving dependent pair types are recorded in [`foundation.type-arithmetic-dependent-pair-types`](foundation.type-arithmetic-dependent-pair-types.md). - Arithmetical laws involving coproduct types are recorded in [`foundation.type-arithmetic-coproduct-types`](foundation.type-arithmetic-coproduct-types.md). - Arithmetical laws involving the unit type are recorded in [`foundation.type-arithmetic-unit-type`](foundation.type-arithmetic-unit-type.md). - Arithmetical laws involving the empty type are recorded in [`foundation.type-arithmetic-empty-type`](foundation.type-arithmetic-empty-type.md). - In [`foundation.universal-property-empty-type`](foundation.universal-property-empty-type.md) we show that `empty` is the initial type, which can be considered a _left zero law for function types_ (`(empty → A) ≃ unit`). - That `unit` is the terminal type is a corollary of `is-contr-Π`, which may be found in [`foundation-core.contractible-types`](foundation-core.contractible-types.md). This can be considered a _right zero law for function types_ (`(A → unit) ≃ unit`).