# Type arithmetic with the empty type ```agda module foundation.type-arithmetic-empty-type where ``` <details><summary>Imports</summary> ```agda open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.empty-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types ``` </details> ## Idea We prove arithmetical laws involving the empty type. ## Laws ### Left zero law for cartesian products ```agda module _ {l : Level} (X : UU l) where inv-pr1-product-empty : empty → empty × X inv-pr1-product-empty () is-section-inv-pr1-product-empty : (pr1 ∘ inv-pr1-product-empty) ~ id is-section-inv-pr1-product-empty () is-retraction-inv-pr1-product-empty : (inv-pr1-product-empty ∘ pr1) ~ id is-retraction-inv-pr1-product-empty (pair () x) is-equiv-pr1-product-empty : is-equiv (pr1 {A = empty} {B = λ t → X}) is-equiv-pr1-product-empty = is-equiv-is-invertible inv-pr1-product-empty is-section-inv-pr1-product-empty is-retraction-inv-pr1-product-empty left-zero-law-product : (empty × X) ≃ empty pr1 left-zero-law-product = pr1 pr2 left-zero-law-product = is-equiv-pr1-product-empty module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) (is-empty-A : is-empty A) where inv-pr1-product-is-empty : A → A × B inv-pr1-product-is-empty a = ex-falso (is-empty-A a) is-section-inv-pr1-product-is-empty : (pr1 ∘ inv-pr1-product-is-empty) ~ id is-section-inv-pr1-product-is-empty a = ex-falso (is-empty-A a) is-retraction-inv-pr1-product-is-empty : (inv-pr1-product-is-empty ∘ pr1) ~ id is-retraction-inv-pr1-product-is-empty (pair a b) = ex-falso (is-empty-A a) is-equiv-pr1-product-is-empty : is-equiv (pr1 {A = A} {B = λ a → B}) is-equiv-pr1-product-is-empty = is-equiv-is-invertible inv-pr1-product-is-empty is-section-inv-pr1-product-is-empty is-retraction-inv-pr1-product-is-empty left-zero-law-product-is-empty : (A × B) ≃ A pr1 left-zero-law-product-is-empty = pr1 pr2 left-zero-law-product-is-empty = is-equiv-pr1-product-is-empty ``` ### Right zero law for cartesian products ```agda module _ {l : Level} (X : UU l) where inv-pr2-product-empty : empty → (X × empty) inv-pr2-product-empty () is-section-inv-pr2-product-empty : (pr2 ∘ inv-pr2-product-empty) ~ id is-section-inv-pr2-product-empty () is-retraction-inv-pr2-product-empty : (inv-pr2-product-empty ∘ pr2) ~ id is-retraction-inv-pr2-product-empty (pair x ()) is-equiv-pr2-product-empty : is-equiv (pr2 {A = X} {B = λ x → empty}) is-equiv-pr2-product-empty = is-equiv-is-invertible inv-pr2-product-empty is-section-inv-pr2-product-empty is-retraction-inv-pr2-product-empty right-zero-law-product : (X × empty) ≃ empty pr1 right-zero-law-product = pr2 pr2 right-zero-law-product = is-equiv-pr2-product-empty module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) (is-empty-B : is-empty B) where inv-pr2-product-is-empty : B → A × B inv-pr2-product-is-empty b = ex-falso (is-empty-B b) is-section-inv-pr2-product-is-empty : (pr2 ∘ inv-pr2-product-is-empty) ~ id is-section-inv-pr2-product-is-empty b = ex-falso (is-empty-B b) is-retraction-inv-pr2-product-is-empty : (inv-pr2-product-is-empty ∘ pr2) ~ id is-retraction-inv-pr2-product-is-empty (pair a b) = ex-falso (is-empty-B b) is-equiv-pr2-product-is-empty : is-equiv (pr2 {A = A} {B = λ a → B}) is-equiv-pr2-product-is-empty = is-equiv-is-invertible inv-pr2-product-is-empty is-section-inv-pr2-product-is-empty is-retraction-inv-pr2-product-is-empty right-zero-law-product-is-empty : (A × B) ≃ B pr1 right-zero-law-product-is-empty = pr2 pr2 right-zero-law-product-is-empty = is-equiv-pr2-product-is-empty ``` ### Right absorption law for dependent pair types and for cartesian products ```agda module _ {l : Level} (A : UU l) where map-right-absorption-Σ : Σ A (λ x → empty) → empty map-right-absorption-Σ (pair x ()) is-equiv-map-right-absorption-Σ : is-equiv map-right-absorption-Σ is-equiv-map-right-absorption-Σ = is-equiv-is-empty' map-right-absorption-Σ right-absorption-Σ : Σ A (λ x → empty) ≃ empty right-absorption-Σ = pair map-right-absorption-Σ is-equiv-map-right-absorption-Σ ``` ### Left absorption law for dependent pair types ```agda module _ {l : Level} (A : empty → UU l) where map-left-absorption-Σ : Σ empty A → empty map-left-absorption-Σ = pr1 is-equiv-map-left-absorption-Σ : is-equiv map-left-absorption-Σ is-equiv-map-left-absorption-Σ = is-equiv-is-empty' map-left-absorption-Σ left-absorption-Σ : Σ empty A ≃ empty pr1 left-absorption-Σ = map-left-absorption-Σ pr2 left-absorption-Σ = is-equiv-map-left-absorption-Σ ``` ### Right absorption law for cartesian product types ```agda module _ {l : Level} {A : UU l} where map-right-absorption-product : A × empty → empty map-right-absorption-product = map-right-absorption-Σ A is-equiv-map-right-absorption-product : is-equiv map-right-absorption-product is-equiv-map-right-absorption-product = is-equiv-map-right-absorption-Σ A right-absorption-product : (A × empty) ≃ empty right-absorption-product = right-absorption-Σ A is-empty-right-factor-is-empty-product : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-empty (A × B) → A → is-empty B is-empty-right-factor-is-empty-product f a b = f (pair a b) ``` ### Left absorption law for cartesian products ```agda module _ {l : Level} (A : UU l) where map-left-absorption-product : empty × A → empty map-left-absorption-product = map-left-absorption-Σ (λ x → A) is-equiv-map-left-absorption-product : is-equiv map-left-absorption-product is-equiv-map-left-absorption-product = is-equiv-map-left-absorption-Σ (λ x → A) left-absorption-product : (empty × A) ≃ empty left-absorption-product = left-absorption-Σ (λ x → A) is-empty-left-factor-is-empty-product : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-empty (A × B) → B → is-empty A is-empty-left-factor-is-empty-product f b a = f (pair a b) ``` ### Left unit law for coproducts ```agda module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) (H : is-empty A) where map-left-unit-law-coproduct-is-empty : A + B → B map-left-unit-law-coproduct-is-empty (inl a) = ex-falso (H a) map-left-unit-law-coproduct-is-empty (inr b) = b map-inv-left-unit-law-coproduct-is-empty : B → A + B map-inv-left-unit-law-coproduct-is-empty = inr is-section-map-inv-left-unit-law-coproduct-is-empty : ( map-left-unit-law-coproduct-is-empty ∘ map-inv-left-unit-law-coproduct-is-empty) ~ id is-section-map-inv-left-unit-law-coproduct-is-empty = refl-htpy is-retraction-map-inv-left-unit-law-coproduct-is-empty : ( map-inv-left-unit-law-coproduct-is-empty ∘ map-left-unit-law-coproduct-is-empty) ~ id is-retraction-map-inv-left-unit-law-coproduct-is-empty (inl a) = ex-falso (H a) is-retraction-map-inv-left-unit-law-coproduct-is-empty (inr b) = refl is-equiv-map-left-unit-law-coproduct-is-empty : is-equiv map-left-unit-law-coproduct-is-empty is-equiv-map-left-unit-law-coproduct-is-empty = is-equiv-is-invertible map-inv-left-unit-law-coproduct-is-empty is-section-map-inv-left-unit-law-coproduct-is-empty is-retraction-map-inv-left-unit-law-coproduct-is-empty left-unit-law-coproduct-is-empty : (A + B) ≃ B pr1 left-unit-law-coproduct-is-empty = map-left-unit-law-coproduct-is-empty pr2 left-unit-law-coproduct-is-empty = is-equiv-map-left-unit-law-coproduct-is-empty is-equiv-inr-is-empty : is-equiv inr is-equiv-inr-is-empty = is-equiv-is-invertible ( map-left-unit-law-coproduct-is-empty) ( is-retraction-map-inv-left-unit-law-coproduct-is-empty) ( is-section-map-inv-left-unit-law-coproduct-is-empty) inv-left-unit-law-coproduct-is-empty : B ≃ (A + B) pr1 inv-left-unit-law-coproduct-is-empty = map-inv-left-unit-law-coproduct-is-empty pr2 inv-left-unit-law-coproduct-is-empty = is-equiv-inr-is-empty is-contr-map-left-unit-law-coproduct-is-empty : is-contr-map map-left-unit-law-coproduct-is-empty is-contr-map-left-unit-law-coproduct-is-empty = is-contr-map-is-equiv is-equiv-map-left-unit-law-coproduct-is-empty is-contr-map-inr-is-empty : is-contr-map map-inv-left-unit-law-coproduct-is-empty is-contr-map-inr-is-empty = is-contr-map-is-equiv is-equiv-inr-is-empty is-right-coproduct-is-empty : (x : A + B) → Σ B (λ b → inr b = x) is-right-coproduct-is-empty x = center (is-contr-map-inr-is-empty x) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-empty-left-summand-is-equiv : is-equiv (inr {A = A} {B = B}) → is-empty A is-empty-left-summand-is-equiv H a = neq-inr-inl (is-section-map-inv-is-equiv H (inl a)) module _ {l : Level} (B : UU l) where map-left-unit-law-coproduct : empty + B → B map-left-unit-law-coproduct = map-left-unit-law-coproduct-is-empty empty B id map-inv-left-unit-law-coproduct : B → empty + B map-inv-left-unit-law-coproduct = inr is-section-map-inv-left-unit-law-coproduct : ( map-left-unit-law-coproduct ∘ map-inv-left-unit-law-coproduct) ~ id is-section-map-inv-left-unit-law-coproduct = is-section-map-inv-left-unit-law-coproduct-is-empty empty B id is-retraction-map-inv-left-unit-law-coproduct : ( map-inv-left-unit-law-coproduct ∘ map-left-unit-law-coproduct) ~ id is-retraction-map-inv-left-unit-law-coproduct = is-retraction-map-inv-left-unit-law-coproduct-is-empty empty B id is-equiv-map-left-unit-law-coproduct : is-equiv map-left-unit-law-coproduct is-equiv-map-left-unit-law-coproduct = is-equiv-map-left-unit-law-coproduct-is-empty empty B id left-unit-law-coproduct : (empty + B) ≃ B left-unit-law-coproduct = left-unit-law-coproduct-is-empty empty B id inv-left-unit-law-coproduct : B ≃ (empty + B) inv-left-unit-law-coproduct = inv-left-unit-law-coproduct-is-empty empty B id ``` ### Right unit law for coproducts ```agda module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) (H : is-empty B) where map-right-unit-law-coproduct-is-empty : A + B → A map-right-unit-law-coproduct-is-empty (inl a) = a map-right-unit-law-coproduct-is-empty (inr b) = ex-falso (H b) map-inv-right-unit-law-coproduct-is-empty : A → A + B map-inv-right-unit-law-coproduct-is-empty = inl is-section-map-inv-right-unit-law-coproduct-is-empty : ( map-right-unit-law-coproduct-is-empty ∘ map-inv-right-unit-law-coproduct-is-empty) ~ id is-section-map-inv-right-unit-law-coproduct-is-empty a = refl is-retraction-map-inv-right-unit-law-coproduct-is-empty : ( map-inv-right-unit-law-coproduct-is-empty ∘ map-right-unit-law-coproduct-is-empty) ~ id is-retraction-map-inv-right-unit-law-coproduct-is-empty (inl a) = refl is-retraction-map-inv-right-unit-law-coproduct-is-empty (inr b) = ex-falso (H b) is-equiv-map-right-unit-law-coproduct-is-empty : is-equiv map-right-unit-law-coproduct-is-empty is-equiv-map-right-unit-law-coproduct-is-empty = is-equiv-is-invertible map-inv-right-unit-law-coproduct-is-empty is-section-map-inv-right-unit-law-coproduct-is-empty is-retraction-map-inv-right-unit-law-coproduct-is-empty is-equiv-inl-is-empty : is-equiv (inl {l1} {l2} {A} {B}) is-equiv-inl-is-empty = is-equiv-is-invertible ( map-right-unit-law-coproduct-is-empty) ( is-retraction-map-inv-right-unit-law-coproduct-is-empty) ( is-section-map-inv-right-unit-law-coproduct-is-empty) right-unit-law-coproduct-is-empty : (A + B) ≃ A pr1 right-unit-law-coproduct-is-empty = map-right-unit-law-coproduct-is-empty pr2 right-unit-law-coproduct-is-empty = is-equiv-map-right-unit-law-coproduct-is-empty inv-right-unit-law-coproduct-is-empty : A ≃ (A + B) pr1 inv-right-unit-law-coproduct-is-empty = inl pr2 inv-right-unit-law-coproduct-is-empty = is-equiv-inl-is-empty is-contr-map-right-unit-law-coproduct-is-empty : is-contr-map map-right-unit-law-coproduct-is-empty is-contr-map-right-unit-law-coproduct-is-empty = is-contr-map-is-equiv is-equiv-map-right-unit-law-coproduct-is-empty is-contr-map-inl-is-empty : is-contr-map inl is-contr-map-inl-is-empty = is-contr-map-is-equiv is-equiv-inl-is-empty is-left-coproduct-is-empty : (x : A + B) → Σ A (λ a → inl a = x) is-left-coproduct-is-empty x = center (is-contr-map-inl-is-empty x) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-empty-right-summand-is-equiv : is-equiv (inl {A = A} {B = B}) → is-empty B is-empty-right-summand-is-equiv H b = neq-inl-inr (is-section-map-inv-is-equiv H (inr b)) module _ {l : Level} (A : UU l) where map-right-unit-law-coproduct : A + empty → A map-right-unit-law-coproduct = map-right-unit-law-coproduct-is-empty A empty id map-inv-right-unit-law-coproduct : A → A + empty map-inv-right-unit-law-coproduct = inl is-section-map-inv-right-unit-law-coproduct : ( map-right-unit-law-coproduct ∘ map-inv-right-unit-law-coproduct) ~ id is-section-map-inv-right-unit-law-coproduct = is-section-map-inv-right-unit-law-coproduct-is-empty A empty id is-retraction-map-inv-right-unit-law-coproduct : ( map-inv-right-unit-law-coproduct ∘ map-right-unit-law-coproduct) ~ id is-retraction-map-inv-right-unit-law-coproduct = is-retraction-map-inv-right-unit-law-coproduct-is-empty A empty id is-equiv-map-right-unit-law-coproduct : is-equiv map-right-unit-law-coproduct is-equiv-map-right-unit-law-coproduct = is-equiv-map-right-unit-law-coproduct-is-empty A empty id right-unit-law-coproduct : (A + empty) ≃ A right-unit-law-coproduct = right-unit-law-coproduct-is-empty A empty id inv-right-unit-law-coproduct : A ≃ (A + empty) inv-right-unit-law-coproduct = inv-right-unit-law-coproduct-is-empty A empty id ``` ## See also - In [`foundation.universal-property-empty-type`](foundation.universal-property-empty-type.md) we show that `empty` is the initial type, which can be considered a _left zero law for function types_ (`(empty → A) ≃ unit`).