# Unital binary operations ```agda module foundation.unital-binary-operations where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation.whiskering-identifications-concatenation open import foundation-core.cartesian-product-types open import foundation-core.homotopies open import foundation-core.identity-types ``` </details> ## Idea A binary operation of type `A → A → A` is **unital** if there is a unit of type `A` that satisfies both the left and right unit laws. Furthermore, a binary operation is **coherently unital** if the proofs of the left and right unit laws agree on the case where both arguments of the operation are the unit. ## Definitions ### Unit laws ```agda module _ {l : Level} {A : UU l} (μ : A → A → A) (e : A) where left-unit-law : UU l left-unit-law = (x : A) → μ e x = x right-unit-law : UU l right-unit-law = (x : A) → μ x e = x coh-unit-laws : left-unit-law → right-unit-law → UU l coh-unit-laws α β = (α e = β e) unit-laws : UU l unit-laws = left-unit-law × right-unit-law coherent-unit-laws : UU l coherent-unit-laws = Σ left-unit-law (λ α → Σ right-unit-law (coh-unit-laws α)) ``` ### Unital binary operations ```agda is-unital : {l : Level} {A : UU l} (μ : A → A → A) → UU l is-unital {A = A} μ = Σ A (unit-laws μ) ``` ### Coherently unital binary operations ```agda is-coherently-unital : {l : Level} {A : UU l} (μ : A → A → A) → UU l is-coherently-unital {A = A} μ = Σ A (coherent-unit-laws μ) ``` ## Properties ### The unit laws for an operation `μ` with unit `e` can be upgraded to coherent unit laws ```agda module _ {l : Level} {A : UU l} (μ : A → A → A) {e : A} where coherent-unit-laws-unit-laws : unit-laws μ e → coherent-unit-laws μ e pr1 (coherent-unit-laws-unit-laws (pair H K)) = H pr1 (pr2 (coherent-unit-laws-unit-laws (pair H K))) x = ( inv (ap (μ x) (K e))) ∙ (( ap (μ x) (H e)) ∙ (K x)) pr2 (pr2 (coherent-unit-laws-unit-laws (pair H K))) = left-transpose-eq-concat ( ap (μ e) (K e)) ( H e) ( (ap (μ e) (H e)) ∙ (K e)) ( ( inv-nat-htpy-id (H) (K e)) ∙ ( right-whisker-concat (coh-htpy-id (H) e) (K e))) module _ {l : Level} {A : UU l} {μ : A → A → A} where is-coherently-unital-is-unital : is-unital μ → is-coherently-unital μ pr1 (is-coherently-unital-is-unital (pair e H)) = e pr2 (is-coherently-unital-is-unital (pair e H)) = coherent-unit-laws-unit-laws μ H ```