# The universal property of equivalences

```agda
module foundation.universal-property-equivalences where
```

<details><summary>Imports</summary>

```agda
open import foundation.dependent-pair-types
open import foundation.dependent-universal-property-equivalences
open import foundation.precomposition-functions-into-subuniverses
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.precomposition-functions
```

</details>

## Idea

Consider a map `f : A → B`. We say that `f` satisfies the **universal property
of equivalences** if
[precomposition](foundation-core.precomposition-functions.md) by `f`

```text
  - ∘ f : (B → X) → (A → X)
```

is an [equivalence](foundation-core.equivalences.md) for every type `X`.

## Definition

```agda
module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  where

  universal-property-equiv : UUω
  universal-property-equiv = {l : Level} (X : UU l)  is-equiv (precomp f X)
```

## Properties

### Precomposition and equivalences

#### If dependent precomposition by `f` is an equivalence, then precomposition by `f` is an equivalence

```agda
abstract
  is-equiv-precomp-is-equiv-precomp-Π :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B) 
    dependent-universal-property-equiv f 
    universal-property-equiv f
  is-equiv-precomp-is-equiv-precomp-Π f H C = H  _  C)
```

#### If `f` is an equivalence, then precomposition by `f` is an equivalence

```agda
module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  where

  abstract
    is-equiv-precomp-is-equiv :
      is-equiv f  universal-property-equiv f
    is-equiv-precomp-is-equiv H =
      is-equiv-precomp-is-equiv-precomp-Π f
        ( is-equiv-precomp-Π-is-equiv H)

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A  B)
  where

  abstract
    is-equiv-precomp-equiv :
      universal-property-equiv (map-equiv e)
    is-equiv-precomp-equiv =
      is-equiv-precomp-is-equiv (map-equiv e) (is-equiv-map-equiv e)

  equiv-precomp : {l3 : Level} (C : UU l3)  (B  C)  (A  C)
  pr1 (equiv-precomp C) = precomp (map-equiv e) C
  pr2 (equiv-precomp C) = is-equiv-precomp-equiv C
```

#### If precomposing by `f` is an equivalence, then `f` is an equivalence

```agda
module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  where

  abstract
    is-equiv-is-equiv-precomp :
      universal-property-equiv f  is-equiv f
    is-equiv-is-equiv-precomp H =
      is-equiv-is-equiv-precomp-structured-type
        ( λ l  l1  l2)
        ( λ X  A  B)
        ( A , f)
        ( B , f)
        ( f)
        ( λ C  H (pr1 C))
```

#### If dependent precomposition by `f` is an equivalence, then `f` is an equivalence

```agda
abstract
  is-equiv-is-equiv-precomp-Π :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B) 
    dependent-universal-property-equiv f 
    is-equiv f
  is-equiv-is-equiv-precomp-Π f H =
    is-equiv-is-equiv-precomp f (is-equiv-precomp-is-equiv-precomp-Π f H)
```