# The universal property of pullbacks ```agda module foundation.universal-property-pullbacks where open import foundation-core.universal-property-pullbacks public ``` <details><summary>Imports</summary> ```agda open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.subtype-identity-principle open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.function-types open import foundation-core.pullbacks ``` </details> ## Idea The {{#concept "universal property of pullbacks" Disambiguation="types"}} describes the optimal way to complete a diagram of the form ```text B | | ∨ A -----> X ``` to a square ```text C -----> B | ⌟ | | | ∨ ∨ A -----> X. ``` ## Properties ### Unique uniqueness of pullbacks ```agda module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) {C : UU l4} {C' : UU l5} where abstract uniquely-unique-universal-property-pullback : ( c' : cone f g C') (c : cone f g C) → ( up-c' : universal-property-pullback f g c') → ( up-c : universal-property-pullback f g c) → is-contr ( Σ (C' ≃ C) (λ e → htpy-cone f g (cone-map f g c (map-equiv e)) c')) uniquely-unique-universal-property-pullback c' c up-c' up-c = is-torsorial-Eq-subtype ( uniqueness-universal-property-pullback f g c up-c C' c') ( is-property-is-equiv) ( map-universal-property-pullback f g c up-c c') ( htpy-cone-map-universal-property-pullback f g c up-c c') ( is-equiv-up-pullback-up-pullback c c' ( map-universal-property-pullback f g c up-c c') ( htpy-cone-map-universal-property-pullback f g c up-c c') up-c up-c') ``` ### The horizontal pullback pasting property Given a diagram ```text ∙ -------> ∙ -------> ∙ | | ⌟ | | | | ∨ ∨ ∨ ∙ -------> ∙ -------> ∙ ``` where the right-hand square is a pullback, then the left-hand square is a pullback if and only if the composite square is. ```agda module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) where abstract universal-property-pullback-rectangle-universal-property-pullback-left-square : (c : cone j h B) (d : cone i (vertical-map-cone j h c) A) → universal-property-pullback j h c → universal-property-pullback i (vertical-map-cone j h c) d → universal-property-pullback (j ∘ i) h (pasting-horizontal-cone i j h c d) universal-property-pullback-rectangle-universal-property-pullback-left-square c d up-pb-c up-pb-d = universal-property-pullback-is-pullback (j ∘ i) h ( pasting-horizontal-cone i j h c d) ( is-pullback-rectangle-is-pullback-left-square i j h c d ( is-pullback-universal-property-pullback j h c up-pb-c) ( is-pullback-universal-property-pullback i ( vertical-map-cone j h c) d up-pb-d)) abstract universal-property-pullback-left-square-universal-property-pullback-rectangle : (c : cone j h B) (d : cone i (vertical-map-cone j h c) A) → universal-property-pullback j h c → universal-property-pullback (j ∘ i) h ( pasting-horizontal-cone i j h c d) → universal-property-pullback i (vertical-map-cone j h c) d universal-property-pullback-left-square-universal-property-pullback-rectangle c d up-pb-c up-pb-rect = universal-property-pullback-is-pullback ( i) ( vertical-map-cone j h c) ( d) ( is-pullback-left-square-is-pullback-rectangle i j h c d ( is-pullback-universal-property-pullback j h c up-pb-c) ( is-pullback-universal-property-pullback (j ∘ i) h ( pasting-horizontal-cone i j h c d) up-pb-rect)) ``` ### The vertical pullback pasting property Given a diagram ```text ∙ -------> ∙ | | | | ∨ ∨ ∙ -------> ∙ | ⌟ | | | ∨ ∨ ∙ -------> ∙ ``` where the bottom square is a pullback, then the top square is a pullback if and only if the composite square is. ```agda module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) where abstract universal-property-pullback-top-universal-property-pullback-rectangle : (c : cone f g B) (d : cone (horizontal-map-cone f g c) h A) → universal-property-pullback f g c → universal-property-pullback f (g ∘ h) (pasting-vertical-cone f g h c d) → universal-property-pullback (horizontal-map-cone f g c) h d universal-property-pullback-top-universal-property-pullback-rectangle c d up-pb-c up-pb-dc = universal-property-pullback-is-pullback ( horizontal-map-cone f g c) ( h) ( d) ( is-pullback-top-square-is-pullback-rectangle f g h c d ( is-pullback-universal-property-pullback f g c up-pb-c) ( is-pullback-universal-property-pullback f (g ∘ h) ( pasting-vertical-cone f g h c d) ( up-pb-dc))) abstract universal-property-pullback-rectangle-universal-property-pullback-top : (c : cone f g B) (d : cone (horizontal-map-cone f g c) h A) → universal-property-pullback f g c → universal-property-pullback (horizontal-map-cone f g c) h d → universal-property-pullback f (g ∘ h) (pasting-vertical-cone f g h c d) universal-property-pullback-rectangle-universal-property-pullback-top c d up-pb-c up-pb-d = universal-property-pullback-is-pullback ( f) ( g ∘ h) ( pasting-vertical-cone f g h c d) ( is-pullback-rectangle-is-pullback-top-square f g h c d ( is-pullback-universal-property-pullback f g c up-pb-c) ( is-pullback-universal-property-pullback ( horizontal-map-cone f g c) ( h) ( d) ( up-pb-d))) ``` ## Table of files about pullbacks The following table lists files that are about pullbacks as a general concept. {{#include tables/pullbacks.md}}