# Σ-closed reflective subuniverses ```agda module orthogonal-factorization-systems.sigma-closed-reflective-subuniverses where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.sigma-closed-subuniverses open import foundation.universe-levels open import orthogonal-factorization-systems.reflective-subuniverses ``` </details> ## Idea A [reflective subuniverse](orthogonal-factorization-systems.reflective-subuniverses.md) is **Σ-closed** if it is closed under the formation of [Σ-types](foundation.dependent-pair-types.md). ## Definition ```agda is-closed-under-Σ-reflective-subuniverse : {l lP : Level} → reflective-subuniverse l lP → UU (lsuc l ⊔ lP) is-closed-under-Σ-reflective-subuniverse (P , _) = is-closed-under-Σ-subuniverse P closed-under-Σ-reflective-subuniverse : (l lP : Level) → UU (lsuc l ⊔ lsuc lP) closed-under-Σ-reflective-subuniverse l lP = Σ ( reflective-subuniverse l lP) ( is-closed-under-Σ-reflective-subuniverse) ``` ## See also The equivalent notions of - [Higher modalities](orthogonal-factorization-systems.higher-modalities.md) - [Uniquely eliminating modalities](orthogonal-factorization-systems.uniquely-eliminating-modalities.md) - [Stable orthogonal factorization systems](orthogonal-factorization-systems.stable-orthogonal-factorization-systems.md) - [Σ-closed reflective modalities](orthogonal-factorization-systems.sigma-closed-reflective-modalities.md) ## References {{#bibliography}} {{#reference RSS20}}