# The universal property of pointed equivalences ```agda module structured-types.universal-property-pointed-equivalences where ``` <details><summary>Imports</summary> ```agda open import foundation.equivalences open import foundation.universe-levels open import structured-types.pointed-maps open import structured-types.pointed-types open import structured-types.precomposition-pointed-maps ``` </details> ## Idea Analogous to the [universal property of equivalences](foundation.universal-property-equivalences.md), the {{#concept "universal property of pointed equivalences" Agda=universal-property-pointed-equiv}} asserts about a [pointed map](structured-types.pointed-maps.md) `f : A →∗ B` that the [precomposition function](structured-types.precomposition-pointed-maps.md) ```text - ∘∗ f : (B →∗ C) → (A →∗ C) ``` is an [equivalence](foundation.equivalences.md) for every [pointed type](structured-types.pointed-types.md) `C`. ## Definitions ### The universal property of pointed equivalences ```agda module _ {l1 l2 : Level} {A : Pointed-Type l1} {B : Pointed-Type l2} (f : A →∗ B) where universal-property-pointed-equiv : UUω universal-property-pointed-equiv = {l : Level} (C : Pointed-Type l) → is-equiv (precomp-pointed-map f C) ```