# Iterated suspensions of pointed types

```agda
module synthetic-homotopy-theory.iterated-suspensions-of-pointed-types where
```

<details><summary>Imports</summary>

```agda
open import elementary-number-theory.natural-numbers

open import foundation.iterating-functions
open import foundation.universe-levels

open import structured-types.pointed-types

open import synthetic-homotopy-theory.suspensions-of-pointed-types
```

</details>

## Idea

Given a [pointed type](structured-types.pointed-types.md) `X` and a
[natural number](elementary-number-theory.natural-numbers.md) `n`, we can form
the **`n`-iterated suspension** of `X`.

## Definitions

### The iterated suspension of a pointed type

```agda
iterated-suspension-Pointed-Type :
  {l : Level} (n : )  Pointed-Type l  Pointed-Type l
iterated-suspension-Pointed-Type n = iterate n suspension-Pointed-Type
```