# An involution on the standard finite types ```agda module univalent-combinatorics.involution-standard-finite-types where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.modular-arithmetic-standard-finite-types open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.involutions open import univalent-combinatorics.standard-finite-types ``` </details> ## Idea Every standard finite type `Fin k` has an involution operation given by `x ↦ -x - 1`, using the group operations on `Fin k`. ## Definition ```agda opposite-Fin : (k : ℕ) → Fin k → Fin k opposite-Fin k x = pred-Fin k (neg-Fin k x) ``` ## Properties ### The opposite function on `Fin k` is an involution ```agda is-involution-opposite-Fin : (k : ℕ) → is-involution (opposite-Fin k) is-involution-opposite-Fin k x = ( ap (pred-Fin k) (neg-pred-Fin k (neg-Fin k x))) ∙ ( ( is-retraction-pred-Fin k (neg-Fin k (neg-Fin k x))) ∙ ( neg-neg-Fin k x)) ```