# Isomorphisms in noncoherent large wild higher precategories ```agda {-# OPTIONS --guardedness #-} module wild-category-theory.isomorphisms-in-noncoherent-large-wild-higher-precategories where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.universe-levels open import wild-category-theory.isomorphisms-in-noncoherent-wild-higher-precategories open import wild-category-theory.noncoherent-large-wild-higher-precategories ``` </details> ## Idea Consider a [noncoherent large wild higher precategory](wild-category-theory.noncoherent-large-wild-higher-precategories.md) `𝒞`. An {{#concept "isomorphism" Disambiguation="in noncoherent large wild higher precategories" Agda=is-iso-Noncoherent-Large-Wild-Higher-Precategory}} in `𝒞` is a morphism `f : x → y` in `𝒞` [equipped](foundation.structure.md) with - a morphism `s : y → x` - a $2$-morphism `is-split-epi : f ∘ s → id`, where `∘` and `id` denote composition of morphisms and the identity morphism given by the transitive and reflexive structure on the underlying [globular type](structured-types.globular-types.md), respectively - a proof `is-iso-is-split-epi : is-iso is-split-epi`, which shows that the above $2$-morphism is itself an isomorphism - a morphism `r : y → x` - a $2$-morphism `is-split-mono : r ∘ f → id` - a proof `is-iso-is-split-mono : is-iso is-split-mono`. This definition of an isomorphism mirrors the definition of [biinvertible maps](foundation-core.equivalences.md) between types. It would be in the spirit of the library to first define what split epimorphisms and split monomorphisms are, and then define isomorphisms as those morphisms which are both. When attempting that definition, one runs into the problem that the $2$-morphisms in the definitions should still be isomorphisms. Note that a noncoherent large wild higher precategory is the most general setting that allows us to _define_ isomorphisms in large wild categories, but because of the missing coherences, we cannot show any of the expected properties. For example we cannot show that all identities are isomorphisms, or that isomorphisms compose. ## Definitions ### The predicate on morphisms of being an isomorphism ```agda record is-iso-Noncoherent-Large-Wild-Higher-Precategory {α : Level → Level} {β : Level → Level → Level} (𝒞 : Noncoherent-Large-Wild-Higher-Precategory α β) {l1 : Level} {x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒞 l1} {l2 : Level} {y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒞 l2} (f : hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 x y) : UU (β l1 l1 ⊔ β l2 l1 ⊔ β l2 l2) where field hom-section-is-iso-Noncoherent-Large-Wild-Higher-Precategory : hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 y x is-split-epi-is-iso-Noncoherent-Large-Wild-Higher-Precategory : 2-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( comp-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( f) ( hom-section-is-iso-Noncoherent-Large-Wild-Higher-Precategory)) ( id-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞) is-iso-is-split-epi-is-iso-Noncoherent-Large-Wild-Higher-Precategory : is-iso-Noncoherent-Wild-Higher-Precategory ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory ( 𝒞) ( y) ( y)) ( is-split-epi-is-iso-Noncoherent-Large-Wild-Higher-Precategory) hom-retraction-is-iso-Noncoherent-Large-Wild-Higher-Precategory : hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 y x is-split-mono-is-iso-Noncoherent-Large-Wild-Higher-Precategory : 2-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( comp-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( hom-retraction-is-iso-Noncoherent-Large-Wild-Higher-Precategory) ( f)) ( id-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞) is-iso-is-split-mono-is-iso-Noncoherent-Large-Wild-Higher-Precategory : is-iso-Noncoherent-Wild-Higher-Precategory ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory ( 𝒞) ( x) ( x)) ( is-split-mono-is-iso-Noncoherent-Large-Wild-Higher-Precategory) open is-iso-Noncoherent-Large-Wild-Higher-Precategory public ``` ### Isomorphisms in a noncoherent large wild higher precategory ```agda iso-Noncoherent-Large-Wild-Higher-Precategory : {α : Level → Level} {β : Level → Level → Level} (𝒞 : Noncoherent-Large-Wild-Higher-Precategory α β) {l1 : Level} (x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒞 l1) {l2 : Level} (y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒞 l2) → UU (β l1 l1 ⊔ β l1 l2 ⊔ β l2 l1 ⊔ β l2 l2) iso-Noncoherent-Large-Wild-Higher-Precategory 𝒞 x y = Σ ( hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 x y) ( is-iso-Noncoherent-Large-Wild-Higher-Precategory 𝒞) ``` ### Components of an isomorphism in a noncoherent large wild higher precategory ```agda module _ {α : Level → Level} {β : Level → Level → Level} {𝒞 : Noncoherent-Large-Wild-Higher-Precategory α β} {l1 : Level} {x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒞 l1} {l2 : Level} {y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒞 l2} (f : iso-Noncoherent-Large-Wild-Higher-Precategory 𝒞 x y) where hom-iso-Noncoherent-Large-Wild-Higher-Precategory : hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 x y hom-iso-Noncoherent-Large-Wild-Higher-Precategory = pr1 f is-iso-hom-iso-Noncoherent-Large-Wild-Higher-Precategory : is-iso-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( hom-iso-Noncoherent-Large-Wild-Higher-Precategory) is-iso-hom-iso-Noncoherent-Large-Wild-Higher-Precategory = pr2 f hom-section-iso-Noncoherent-Large-Wild-Higher-Precategory : hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 y x hom-section-iso-Noncoherent-Large-Wild-Higher-Precategory = hom-section-is-iso-Noncoherent-Large-Wild-Higher-Precategory ( is-iso-hom-iso-Noncoherent-Large-Wild-Higher-Precategory) is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory : 2-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( comp-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( hom-iso-Noncoherent-Large-Wild-Higher-Precategory) ( hom-section-iso-Noncoherent-Large-Wild-Higher-Precategory)) ( id-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞) is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory = is-split-epi-is-iso-Noncoherent-Large-Wild-Higher-Precategory ( is-iso-hom-iso-Noncoherent-Large-Wild-Higher-Precategory) is-iso-is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory : is-iso-Noncoherent-Wild-Higher-Precategory ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory ( 𝒞) ( y) ( y)) ( is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory) is-iso-is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory = is-iso-is-split-epi-is-iso-Noncoherent-Large-Wild-Higher-Precategory ( is-iso-hom-iso-Noncoherent-Large-Wild-Higher-Precategory) iso-is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory : iso-Noncoherent-Wild-Higher-Precategory ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory ( 𝒞) ( y) ( y)) ( comp-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( hom-iso-Noncoherent-Large-Wild-Higher-Precategory) ( hom-section-iso-Noncoherent-Large-Wild-Higher-Precategory)) ( id-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞) pr1 iso-is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory = is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory pr2 iso-is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory = is-iso-is-split-epi-iso-Noncoherent-Large-Wild-Higher-Precategory hom-retraction-iso-Noncoherent-Large-Wild-Higher-Precategory : hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 y x hom-retraction-iso-Noncoherent-Large-Wild-Higher-Precategory = hom-retraction-is-iso-Noncoherent-Large-Wild-Higher-Precategory ( is-iso-hom-iso-Noncoherent-Large-Wild-Higher-Precategory) is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory : 2-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( comp-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( hom-retraction-iso-Noncoherent-Large-Wild-Higher-Precategory) ( hom-iso-Noncoherent-Large-Wild-Higher-Precategory)) ( id-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞) is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory = is-split-mono-is-iso-Noncoherent-Large-Wild-Higher-Precategory ( is-iso-hom-iso-Noncoherent-Large-Wild-Higher-Precategory) is-iso-is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory : is-iso-Noncoherent-Wild-Higher-Precategory ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory ( 𝒞) ( x) ( x)) ( is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory) is-iso-is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory = is-iso-is-split-mono-is-iso-Noncoherent-Large-Wild-Higher-Precategory ( is-iso-hom-iso-Noncoherent-Large-Wild-Higher-Precategory) iso-is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory : iso-Noncoherent-Wild-Higher-Precategory ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory ( 𝒞) ( x) ( x)) ( comp-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞 ( hom-retraction-iso-Noncoherent-Large-Wild-Higher-Precategory) ( hom-iso-Noncoherent-Large-Wild-Higher-Precategory)) ( id-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒞) pr1 iso-is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory = is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory pr2 iso-is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory = is-iso-is-split-mono-iso-Noncoherent-Large-Wild-Higher-Precategory ``` ## See also - [Isomorphisms in noncoherent wild higher precategories](wild-category-theory.isomorphisms-in-noncoherent-wild-higher-precategories.md)