# The multiplicative monoid of natural numbers ```agda module elementary-number-theory.multiplicative-monoid-of-natural-numbers where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.monoids open import group-theory.semigroups ``` </details> ## Idea The **multiplicative monoid of natural numbers** consists of [natural numbers](elementary-number-theory.natural-numbers.md), and is equipped with the [multiplication operation](elementary-number-theory.multiplication-natural-numbers.md) of the natural numbers as its multiplicative structure. ## Definitions ### The multiplicative semigroup of natural numbers ```agda ℕ*-Semigroup : Semigroup lzero pr1 ℕ*-Semigroup = ℕ-Set pr1 (pr2 ℕ*-Semigroup) = mul-ℕ pr2 (pr2 ℕ*-Semigroup) = associative-mul-ℕ ``` ### The multiplicative monoid of natural numbers ```agda ℕ*-Monoid : Monoid lzero pr1 ℕ*-Monoid = ℕ*-Semigroup pr1 (pr2 ℕ*-Monoid) = 1 pr1 (pr2 (pr2 ℕ*-Monoid)) = left-unit-law-mul-ℕ pr2 (pr2 (pr2 ℕ*-Monoid)) = right-unit-law-mul-ℕ ```