# Monoids ```agda module group-theory.monoids where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.unit-type open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.semigroups open import structured-types.h-spaces open import structured-types.wild-monoids ``` </details> ## Idea **Monoids** are [unital](foundation.unital-binary-operations.md) [semigroups](group-theory.semigroups.md). ## Definition ```agda is-unital-Semigroup : {l : Level} → Semigroup l → UU l is-unital-Semigroup G = is-unital (mul-Semigroup G) Monoid : (l : Level) → UU (lsuc l) Monoid l = Σ (Semigroup l) is-unital-Semigroup module _ {l : Level} (M : Monoid l) where semigroup-Monoid : Semigroup l semigroup-Monoid = pr1 M is-unital-Monoid : is-unital-Semigroup semigroup-Monoid is-unital-Monoid = pr2 M type-Monoid : UU l type-Monoid = type-Semigroup semigroup-Monoid set-Monoid : Set l set-Monoid = set-Semigroup semigroup-Monoid is-set-type-Monoid : is-set type-Monoid is-set-type-Monoid = is-set-type-Semigroup semigroup-Monoid mul-Monoid : type-Monoid → type-Monoid → type-Monoid mul-Monoid = mul-Semigroup semigroup-Monoid mul-Monoid' : type-Monoid → type-Monoid → type-Monoid mul-Monoid' y x = mul-Monoid x y ap-mul-Monoid : {x x' y y' : type-Monoid} → x = x' → y = y' → mul-Monoid x y = mul-Monoid x' y' ap-mul-Monoid = ap-mul-Semigroup semigroup-Monoid associative-mul-Monoid : (x y z : type-Monoid) → mul-Monoid (mul-Monoid x y) z = mul-Monoid x (mul-Monoid y z) associative-mul-Monoid = associative-mul-Semigroup semigroup-Monoid has-unit-Monoid : is-unital mul-Monoid has-unit-Monoid = pr2 M unit-Monoid : type-Monoid unit-Monoid = pr1 has-unit-Monoid left-unit-law-mul-Monoid : (x : type-Monoid) → mul-Monoid unit-Monoid x = x left-unit-law-mul-Monoid = pr1 (pr2 has-unit-Monoid) right-unit-law-mul-Monoid : (x : type-Monoid) → mul-Monoid x unit-Monoid = x right-unit-law-mul-Monoid = pr2 (pr2 has-unit-Monoid) left-swap-mul-Monoid : {x y z : type-Monoid} → mul-Monoid x y = mul-Monoid y x → mul-Monoid x (mul-Monoid y z) = mul-Monoid y (mul-Monoid x z) left-swap-mul-Monoid = left-swap-mul-Semigroup semigroup-Monoid right-swap-mul-Monoid : {x y z : type-Monoid} → mul-Monoid y z = mul-Monoid z y → mul-Monoid (mul-Monoid x y) z = mul-Monoid (mul-Monoid x z) y right-swap-mul-Monoid = right-swap-mul-Semigroup semigroup-Monoid interchange-mul-mul-Monoid : {x y z w : type-Monoid} → mul-Monoid y z = mul-Monoid z y → mul-Monoid (mul-Monoid x y) (mul-Monoid z w) = mul-Monoid (mul-Monoid x z) (mul-Monoid y w) interchange-mul-mul-Monoid = interchange-mul-mul-Semigroup semigroup-Monoid ``` ## Properties ### For any semigroup `G`, being unital is a property ```agda abstract all-elements-equal-is-unital-Semigroup : {l : Level} (G : Semigroup l) → all-elements-equal (is-unital-Semigroup G) all-elements-equal-is-unital-Semigroup ( X , μ , associative-μ) ( e , left-unit-e , right-unit-e) ( e' , left-unit-e' , right-unit-e') = eq-type-subtype ( λ e → product-Prop ( Π-Prop (type-Set X) (λ y → Id-Prop X (μ e y) y)) ( Π-Prop (type-Set X) (λ x → Id-Prop X (μ x e) x))) ( (inv (left-unit-e' e)) ∙ (right-unit-e e')) abstract is-prop-is-unital-Semigroup : {l : Level} (G : Semigroup l) → is-prop (is-unital-Semigroup G) is-prop-is-unital-Semigroup G = is-prop-all-elements-equal (all-elements-equal-is-unital-Semigroup G) is-unital-prop-Semigroup : {l : Level} (G : Semigroup l) → Prop l pr1 (is-unital-prop-Semigroup G) = is-unital-Semigroup G pr2 (is-unital-prop-Semigroup G) = is-prop-is-unital-Semigroup G ``` ### Monoids are H-spaces ```agda h-space-Monoid : {l : Level} (M : Monoid l) → H-Space l pr1 (pr1 (h-space-Monoid M)) = type-Monoid M pr2 (pr1 (h-space-Monoid M)) = unit-Monoid M pr1 (pr2 (h-space-Monoid M)) = mul-Monoid M pr1 (pr2 (pr2 (h-space-Monoid M))) = left-unit-law-mul-Monoid M pr1 (pr2 (pr2 (pr2 (h-space-Monoid M)))) = right-unit-law-mul-Monoid M pr2 (pr2 (pr2 (pr2 (h-space-Monoid M)))) = eq-is-prop (is-set-type-Monoid M _ _) ``` ### Monoids are wild monoids ```agda wild-monoid-Monoid : {l : Level} (M : Monoid l) → Wild-Monoid l pr1 (wild-monoid-Monoid M) = h-space-Monoid M pr1 (pr2 (wild-monoid-Monoid M)) = associative-mul-Monoid M pr1 (pr2 (pr2 (wild-monoid-Monoid M))) y z = eq-is-prop (is-set-type-Monoid M _ _) pr1 (pr2 (pr2 (pr2 (wild-monoid-Monoid M)))) x z = eq-is-prop (is-set-type-Monoid M _ _) pr1 (pr2 (pr2 (pr2 (pr2 (wild-monoid-Monoid M))))) x y = eq-is-prop (is-set-type-Monoid M _ _) pr2 (pr2 (pr2 (pr2 (pr2 (wild-monoid-Monoid M))))) = star ``` ## See also - In [one object precategories](category-theory.one-object-precategories.md), we show that monoids are precategories whose type of objects is contractible.