# Subtypes ```agda module foundation-core.subtypes where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.subtype-identity-principle open import foundation.universe-levels open import foundation-core.embeddings open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.sets open import foundation-core.transport-along-identifications open import foundation-core.truncated-maps open import foundation-core.truncated-types open import foundation-core.truncation-levels ``` </details> ## Idea A **subtype** of a type `A` is a family of [propositions](foundation-core.propositions.md) over `A`. The underlying type of a subtype `P` of `A` is the [total space](foundation.dependent-pair-types.md) `Σ A B`. ## Definitions ### Subtypes ```agda module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) where is-subtype : UU (l1 ⊔ l2) is-subtype = (x : A) → is-prop (B x) is-property : UU (l1 ⊔ l2) is-property = is-subtype subtype : {l1 : Level} (l : Level) (A : UU l1) → UU (l1 ⊔ lsuc l) subtype l A = A → Prop l module _ {l1 l2 : Level} {A : UU l1} (P : subtype l2 A) where is-in-subtype : A → UU l2 is-in-subtype x = type-Prop (P x) is-prop-is-in-subtype : (x : A) → is-prop (is-in-subtype x) is-prop-is-in-subtype x = is-prop-type-Prop (P x) type-subtype : UU (l1 ⊔ l2) type-subtype = Σ A is-in-subtype inclusion-subtype : type-subtype → A inclusion-subtype = pr1 ap-inclusion-subtype : (x y : type-subtype) → x = y → (inclusion-subtype x = inclusion-subtype y) ap-inclusion-subtype x y p = ap inclusion-subtype p is-in-subtype-inclusion-subtype : (x : type-subtype) → is-in-subtype (inclusion-subtype x) is-in-subtype-inclusion-subtype = pr2 eq-is-in-subtype : {x : A} {p q : is-in-subtype x} → p = q eq-is-in-subtype {x} = eq-is-prop (is-prop-is-in-subtype x) is-closed-under-eq-subtype : {x y : A} → is-in-subtype x → (x = y) → is-in-subtype y is-closed-under-eq-subtype p refl = p is-closed-under-eq-subtype' : {x y : A} → is-in-subtype y → (x = y) → is-in-subtype x is-closed-under-eq-subtype' p refl = p ``` ### The containment relation on subtypes ```agda module _ {l1 : Level} {A : UU l1} where leq-prop-subtype : {l2 l3 : Level} → subtype l2 A → subtype l3 A → Prop (l1 ⊔ l2 ⊔ l3) leq-prop-subtype P Q = Π-Prop A (λ x → hom-Prop (P x) (Q x)) infix 5 _⊆_ _⊆_ : {l2 l3 : Level} (P : subtype l2 A) (Q : subtype l3 A) → UU (l1 ⊔ l2 ⊔ l3) P ⊆ Q = type-Prop (leq-prop-subtype P Q) is-prop-leq-subtype : {l2 l3 : Level} (P : subtype l2 A) (Q : subtype l3 A) → is-prop (P ⊆ Q) is-prop-leq-subtype P Q = is-prop-type-Prop (leq-prop-subtype P Q) ``` ## Properties ### The containment relation on subtypes is a preordering ```agda module _ {l1 : Level} {A : UU l1} where refl-leq-subtype : {l2 : Level} (P : subtype l2 A) → P ⊆ P refl-leq-subtype P x = id transitive-leq-subtype : {l2 l3 l4 : Level} (P : subtype l2 A) (Q : subtype l3 A) (R : subtype l4 A) → Q ⊆ R → P ⊆ Q → P ⊆ R transitive-leq-subtype P Q R H K x = H x ∘ K x ``` ### Equality in subtypes ```agda module _ {l1 l2 : Level} {A : UU l1} (P : subtype l2 A) where Eq-type-subtype : (x y : type-subtype P) → UU l1 Eq-type-subtype x y = (pr1 x = pr1 y) extensionality-type-subtype' : (a b : type-subtype P) → (a = b) ≃ (pr1 a = pr1 b) extensionality-type-subtype' (a , p) = extensionality-type-subtype P p refl (λ x → id-equiv) eq-type-subtype : {a b : type-subtype P} → (pr1 a = pr1 b) → a = b eq-type-subtype {a} {b} = map-inv-equiv (extensionality-type-subtype' a b) ``` ### If `B` is a subtype of `A`, then the projection map `Σ A B → A` is a propositional map ```agda module _ {l1 l2 : Level} {A : UU l1} (B : subtype l2 A) where abstract is-prop-map-inclusion-subtype : is-prop-map (inclusion-subtype B) is-prop-map-inclusion-subtype = ( λ x → is-prop-equiv ( equiv-fiber-pr1 (is-in-subtype B) x) ( is-prop-is-in-subtype B x)) prop-map-subtype : prop-map (type-subtype B) A pr1 prop-map-subtype = inclusion-subtype B pr2 prop-map-subtype = is-prop-map-inclusion-subtype ``` ### If `B` is a subtype of `A`, then the projection map `Σ A B → A` is an embedding ```agda module _ {l1 l2 : Level} {A : UU l1} (B : subtype l2 A) where abstract is-emb-inclusion-subtype : is-emb (inclusion-subtype B) is-emb-inclusion-subtype = is-emb-is-prop-map ( is-prop-map-inclusion-subtype B) emb-subtype : type-subtype B ↪ A pr1 emb-subtype = inclusion-subtype B pr2 emb-subtype = is-emb-inclusion-subtype equiv-ap-inclusion-subtype : {s t : type-subtype B} → (s = t) ≃ (inclusion-subtype B s = inclusion-subtype B t) pr1 (equiv-ap-inclusion-subtype {s} {t}) = ap-inclusion-subtype B s t pr2 (equiv-ap-inclusion-subtype {s} {t}) = is-emb-inclusion-subtype s t ``` ### Restriction of a `k`-truncated map to a `k`-truncated map into a subtype ```agda module _ {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} (B : subtype l2 A) {X : UU l3} where abstract is-trunc-map-into-subtype : {f : X → A} → is-trunc-map k f → (p : (x : X) → is-in-subtype B (f x)) → is-trunc-map k {B = type-subtype B} (λ x → (f x , p x)) is-trunc-map-into-subtype H p (a , b) = is-trunc-equiv k _ ( equiv-tot (λ x → extensionality-type-subtype' B _ _)) ( H a) trunc-map-into-subtype : (f : trunc-map k X A) → ((x : X) → is-in-subtype B (map-trunc-map f x)) → trunc-map k X (type-subtype B) pr1 (trunc-map-into-subtype f p) x = (map-trunc-map f x , p x) pr2 (trunc-map-into-subtype f p) = is-trunc-map-into-subtype ( is-trunc-map-map-trunc-map f) ( p) ``` ### Restriction of an embedding to an embedding into a subtype ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (B : subtype l2 A) {X : UU l3} (f : X ↪ A) (p : (x : X) → is-in-subtype B (map-emb f x)) where map-emb-into-subtype : X → type-subtype B pr1 (map-emb-into-subtype x) = map-emb f x pr2 (map-emb-into-subtype x) = p x abstract is-emb-map-emb-into-subtype : is-emb map-emb-into-subtype is-emb-map-emb-into-subtype = is-emb-is-prop-map ( is-trunc-map-into-subtype ( neg-one-𝕋) ( B) ( is-prop-map-is-emb (is-emb-map-emb f)) ( p)) emb-into-subtype : X ↪ type-subtype B pr1 emb-into-subtype = map-emb-into-subtype pr2 emb-into-subtype = is-emb-map-emb-into-subtype ``` ### If the projection map of a type family is an embedding, then the type family is a subtype ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where abstract is-subtype-is-emb-pr1 : is-emb (pr1 {B = B}) → is-subtype B is-subtype-is-emb-pr1 H x = is-prop-equiv' (equiv-fiber-pr1 B x) (is-prop-map-is-emb H x) ``` ### A subtype of a `k+1`-truncated type is `k+1`-truncated ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} (P : subtype l2 A) where abstract is-trunc-type-subtype : is-trunc (succ-𝕋 k) A → is-trunc (succ-𝕋 k) (type-subtype P) is-trunc-type-subtype = is-trunc-is-emb k ( inclusion-subtype P) ( is-emb-inclusion-subtype P) module _ {l1 l2 : Level} {A : UU l1} (P : subtype l2 A) where abstract is-prop-type-subtype : is-prop A → is-prop (type-subtype P) is-prop-type-subtype = is-trunc-type-subtype neg-two-𝕋 P abstract is-set-type-subtype : is-set A → is-set (type-subtype P) is-set-type-subtype = is-trunc-type-subtype neg-one-𝕋 P prop-subprop : {l1 l2 : Level} (A : Prop l1) (P : subtype l2 (type-Prop A)) → Prop (l1 ⊔ l2) pr1 (prop-subprop A P) = type-subtype P pr2 (prop-subprop A P) = is-prop-type-subtype P (is-prop-type-Prop A) set-subset : {l1 l2 : Level} (A : Set l1) (P : subtype l2 (type-Set A)) → Set (l1 ⊔ l2) pr1 (set-subset A P) = type-subtype P pr2 (set-subset A P) = is-set-type-subtype P (is-set-type-Set A) ``` ### Logically equivalent subtypes induce equivalences on the underlying type of a subtype ```agda equiv-type-subtype : { l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2} {Q : A → UU l3} → ( is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q) → ( f : (x : A) → P x → Q x) → ( g : (x : A) → Q x → P x) → ( Σ A P) ≃ (Σ A Q) pr1 (equiv-type-subtype is-subtype-P is-subtype-Q f g) = tot f pr2 (equiv-type-subtype is-subtype-P is-subtype-Q f g) = is-equiv-tot-is-fiberwise-equiv {f = f} ( λ x → is-equiv-has-converse-is-prop ( is-subtype-P x) ( is-subtype-Q x) ( g x)) ``` ### Equivalences of subtypes ```agda equiv-subtype-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) (C : A → Prop l3) (D : B → Prop l4) → ((x : A) → type-Prop (C x) ↔ type-Prop (D (map-equiv e x))) → type-subtype C ≃ type-subtype D equiv-subtype-equiv e C D H = equiv-Σ (type-Prop ∘ D) e (λ x → equiv-iff' (C x) (D (map-equiv e x)) (H x)) ``` ```agda abstract is-equiv-subtype-is-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} {Q : B → UU l4} (is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q) (f : A → B) (g : (x : A) → P x → Q (f x)) → is-equiv f → ((x : A) → (Q (f x)) → P x) → is-equiv (map-Σ Q f g) is-equiv-subtype-is-equiv {Q = Q} is-subtype-P is-subtype-Q f g is-equiv-f h = is-equiv-map-Σ Q is-equiv-f ( λ x → is-equiv-has-converse-is-prop ( is-subtype-P x) ( is-subtype-Q (f x)) ( h x)) abstract is-equiv-subtype-is-equiv' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} {Q : B → UU l4} (is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q) (f : A → B) (g : (x : A) → P x → Q (f x)) → (is-equiv-f : is-equiv f) → ((y : B) → (Q y) → P (map-inv-is-equiv is-equiv-f y)) → is-equiv (map-Σ Q f g) is-equiv-subtype-is-equiv' {P = P} {Q} is-subtype-P is-subtype-Q f g is-equiv-f h = is-equiv-map-Σ Q is-equiv-f ( λ x → is-equiv-has-converse-is-prop ( is-subtype-P x) ( is-subtype-Q (f x)) ( (tr P (is-retraction-map-inv-is-equiv is-equiv-f x)) ∘ (h (f x)))) ```