# Logical equivalences ```agda module foundation.logical-equivalences where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.equivalence-extensionality open import foundation.function-extensionality open import foundation.functoriality-cartesian-product-types open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.propositions open import foundation-core.torsorial-type-families ``` </details> ## Idea {{#concept "Logical equivalences" Agda=}} between two types `A` and `B` consist of a map `A → B` and a map `B → A`. The type of logical equivalences between types is the Curry-Howard interpretation of logical equivalences between [propositions](foundation-core.propositions.md). ## Definition ### The structure on a map of being a logical equivalence ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where has-converse : (A → B) → UU (l1 ⊔ l2) has-converse f = B → A is-prop-has-converse : is-prop A → (f : A → B) → is-prop (has-converse f) is-prop-has-converse is-prop-A f = is-prop-function-type is-prop-A has-converse-Prop : {l1 l2 : Level} (A : Prop l1) {B : UU l2} → (type-Prop A → B) → Prop (l1 ⊔ l2) has-converse-Prop A f = ( has-converse f , is-prop-has-converse (is-prop-type-Prop A) f) ``` ### Logical equivalences between types ```agda iff : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) iff A B = Σ (A → B) has-converse infix 6 _↔_ _↔_ : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) _↔_ = iff module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (H : A ↔ B) where forward-implication : A → B forward-implication = pr1 H backward-implication : B → A backward-implication = pr2 H ``` ### Logical equivalences between propositions ```agda module _ {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) where type-iff-Prop : UU (l1 ⊔ l2) type-iff-Prop = type-Prop P ↔ type-Prop Q is-prop-iff-Prop : is-prop type-iff-Prop is-prop-iff-Prop = is-prop-product ( is-prop-function-type (is-prop-type-Prop Q)) ( is-prop-function-type (is-prop-type-Prop P)) iff-Prop : Prop (l1 ⊔ l2) pr1 iff-Prop = type-iff-Prop pr2 iff-Prop = is-prop-iff-Prop infix 6 _⇔_ _⇔_ : Prop (l1 ⊔ l2) _⇔_ = iff-Prop ``` ### The identity logical equivalence ```agda id-iff : {l1 : Level} {A : UU l1} → A ↔ A id-iff = (id , id) ``` ### Composition of logical equivalences ```agda infixr 15 _∘iff_ _∘iff_ : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} → (B ↔ C) → (A ↔ B) → (A ↔ C) pr1 ((g1 , g2) ∘iff (f1 , f2)) = g1 ∘ f1 pr2 ((g1 , g2) ∘iff (f1 , f2)) = f2 ∘ g2 ``` ### Inverting a logical equivalence ```agda inv-iff : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A ↔ B) → (B ↔ A) pr1 (inv-iff (f , g)) = g pr2 (inv-iff (f , g)) = f ``` ## Properties ### Characterizing equality of logical equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where htpy-iff : (f g : A ↔ B) → UU (l1 ⊔ l2) htpy-iff f g = ( forward-implication f ~ forward-implication g) × ( backward-implication f ~ backward-implication g) ext-iff : (f g : A ↔ B) → (f = g) ≃ htpy-iff f g ext-iff f g = equiv-product equiv-funext equiv-funext ∘e equiv-pair-eq f g refl-htpy-iff : (f : A ↔ B) → htpy-iff f f pr1 (refl-htpy-iff f) = refl-htpy pr2 (refl-htpy-iff f) = refl-htpy htpy-eq-iff : {f g : A ↔ B} → f = g → htpy-iff f g htpy-eq-iff {f} {g} = map-equiv (ext-iff f g) eq-htpy-iff : (f g : A ↔ B) → htpy-iff f g → (f = g) eq-htpy-iff f g = map-inv-equiv (ext-iff f g) ``` ### Logical equivalences between propositions induce equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-equiv-has-converse-is-prop : is-prop A → is-prop B → {f : A → B} → (B → A) → is-equiv f is-equiv-has-converse-is-prop is-prop-A is-prop-B {f} g = is-equiv-is-invertible ( g) ( λ y → eq-is-prop is-prop-B) ( λ x → eq-is-prop is-prop-A) abstract equiv-iff-is-prop : is-prop A → is-prop B → (A → B) → (B → A) → A ≃ B pr1 (equiv-iff-is-prop is-prop-A is-prop-B f g) = f pr2 (equiv-iff-is-prop is-prop-A is-prop-B f g) = is-equiv-has-converse-is-prop is-prop-A is-prop-B g module _ {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) where abstract is-equiv-has-converse : {f : type-Prop P → type-Prop Q} → (type-Prop Q → type-Prop P) → is-equiv f is-equiv-has-converse = is-equiv-has-converse-is-prop ( is-prop-type-Prop P) ( is-prop-type-Prop Q) equiv-iff' : type-Prop (P ⇔ Q) → (type-Prop P ≃ type-Prop Q) pr1 (equiv-iff' t) = forward-implication t pr2 (equiv-iff' t) = is-equiv-has-converse-is-prop ( is-prop-type-Prop P) ( is-prop-type-Prop Q) ( backward-implication t) equiv-iff : (type-Prop P → type-Prop Q) → (type-Prop Q → type-Prop P) → type-Prop P ≃ type-Prop Q equiv-iff f g = equiv-iff' (f , g) ``` ### Equivalences are logical equivalences ```agda iff-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A ≃ B) → (A ↔ B) pr1 (iff-equiv e) = map-equiv e pr2 (iff-equiv e) = map-inv-equiv e is-injective-iff-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-injective (iff-equiv {A = A} {B}) is-injective-iff-equiv p = eq-htpy-equiv (pr1 (htpy-eq-iff p)) compute-fiber-iff-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} ((f , g) : A ↔ B) → fiber (iff-equiv) (f , g) ≃ Σ (is-equiv f) (λ f' → map-inv-is-equiv f' ~ g) compute-fiber-iff-equiv {A = A} {B} (f , g) = ( equiv-tot (λ _ → equiv-funext)) ∘e ( left-unit-law-Σ-is-contr (is-torsorial-Id' f) (f , refl)) ∘e ( inv-associative-Σ (A → B) (_= f) _) ∘e ( equiv-tot (λ _ → equiv-left-swap-Σ)) ∘e ( associative-Σ (A → B) _ _) ∘e ( equiv-tot (λ e → equiv-pair-eq (iff-equiv e) (f , g))) ``` ### Two equal propositions are logically equivalent ```agda iff-eq : {l1 : Level} {P Q : Prop l1} → P = Q → type-Prop (P ⇔ Q) pr1 (iff-eq refl) = id pr2 (iff-eq refl) = id ``` ### Logical equivalence of propositions is equivalent to equivalence of propositions ```agda abstract is-equiv-equiv-iff : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → is-equiv (equiv-iff' P Q) is-equiv-equiv-iff P Q = is-equiv-has-converse-is-prop ( is-prop-iff-Prop P Q) ( is-prop-type-equiv-Prop P Q) ( iff-equiv) equiv-equiv-iff : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → (type-Prop P ↔ type-Prop Q) ≃ (type-Prop P ≃ type-Prop Q) pr1 (equiv-equiv-iff P Q) = equiv-iff' P Q pr2 (equiv-equiv-iff P Q) = is-equiv-equiv-iff P Q ``` ## Logical equivalences between dependent function types ```agda module _ {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} where iff-Π-iff-family : ((i : I) → A i ↔ B i) → ((i : I) → A i) ↔ ((i : I) → B i) pr1 (iff-Π-iff-family e) a i = forward-implication (e i) (a i) pr2 (iff-Π-iff-family e) b i = backward-implication (e i) (b i) ``` ## Reasoning with logical equivalences Logical equivalences can be constructed by equational reasoning in the following way: ```text logical-equivalence-reasoning X ↔ Y by equiv-1 ↔ Z by equiv-2 ↔ V by equiv-3 ``` ```agda infixl 1 logical-equivalence-reasoning_ infixl 0 step-logical-equivalence-reasoning logical-equivalence-reasoning_ : {l1 : Level} (X : UU l1) → X ↔ X pr1 (logical-equivalence-reasoning X) = id pr2 (logical-equivalence-reasoning X) = id step-logical-equivalence-reasoning : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} → (X ↔ Y) → (Z : UU l3) → (Y ↔ Z) → (X ↔ Z) step-logical-equivalence-reasoning e Z f = f ∘iff e syntax step-logical-equivalence-reasoning e Z f = e ↔ Z by f ```