# Function extensionality ```agda module foundation.function-extensionality where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.evaluation-functions open import foundation.implicit-function-types open import foundation.universe-levels open import foundation-core.coherently-invertible-maps open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.retractions open import foundation-core.sections ``` </details> ## Idea The {{#concept "function extensionality axiom" Agda=function-extensionality Agda=funext}} asserts that [identifications](foundation-core.identity-types.md) of (dependent) functions are [equivalently](foundation-core.equivalences.md) described as [homotopies](foundation-core.homotopies.md) between them. In other words, a function is completely determined by its values. Function extensionality is postulated by stating that the canonical map ```text htpy-eq : f = g → f ~ g ``` from identifications between two functions to homotopies between them is an equivalence. The map `htpy-eq` is the unique map that fits in a [commuting triangle](foundation-core.commuting-triangles-of-maps.md) ```text htpy-eq (f = g) ----------> (f ~ g) \ / ap (ev x) \ / ev x ∨ ∨ (f x = g x) ``` In other words, we define ```text htpy-eq p x := ap (ev x) p. ``` It follows from this definition that `htpy-eq refl ≐ refl-htpy`, as expected. ## Definitions ### Equalities induce homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where htpy-eq : {f g : (x : A) → B x} → f = g → f ~ g htpy-eq p a = ap (ev a) p compute-htpy-eq-refl : {f : (x : A) → B x} → htpy-eq refl = refl-htpy' f compute-htpy-eq-refl = refl ``` ### An instance of function extensionality This property asserts that, _given_ two functions `f` and `g`, the map ```text htpy-eq : f = g → f ~ g ``` is an equivalence. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where instance-function-extensionality : (f g : (x : A) → B x) → UU (l1 ⊔ l2) instance-function-extensionality f g = is-equiv (htpy-eq {f = f} {g}) ``` ### Based function extensionality This property asserts that, _given_ a function `f`, the map ```text htpy-eq : f = g → f ~ g ``` is an equivalence for any function `g` of the same type. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where based-function-extensionality : (f : (x : A) → B x) → UU (l1 ⊔ l2) based-function-extensionality f = (g : (x : A) → B x) → instance-function-extensionality f g ``` ### The function extensionality principle with respect to a universe level ```agda function-extensionality-Level : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) function-extensionality-Level l1 l2 = {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) → based-function-extensionality f ``` ### The function extensionality axiom ```agda function-extensionality : UUω function-extensionality = {l1 l2 : Level} → function-extensionality-Level l1 l2 ``` Rather than postulating a witness of `function-extensionality` directly, we postulate the constituents of a coherent two-sided inverse to `htpy-eq`. The benefits are that we end up with a single converse map to `htpy-eq`, rather than a separate section and retraction, although they would be homotopic regardless. In addition, this formulation helps Agda display goals involving function extensionality in a more readable way. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} where postulate eq-htpy : f ~ g → f = g is-section-eq-htpy : is-section htpy-eq eq-htpy is-retraction-eq-htpy' : is-retraction htpy-eq eq-htpy coh-eq-htpy' : coherence-is-coherently-invertible ( htpy-eq) ( eq-htpy) ( is-section-eq-htpy) ( is-retraction-eq-htpy') funext : function-extensionality funext f g = is-equiv-is-invertible eq-htpy is-section-eq-htpy is-retraction-eq-htpy' module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where equiv-funext : {f g : (x : A) → B x} → (f = g) ≃ (f ~ g) pr1 (equiv-funext) = htpy-eq pr2 (equiv-funext {f} {g}) = funext f g is-equiv-eq-htpy : (f g : (x : A) → B x) → is-equiv (eq-htpy {f = f} {g}) is-equiv-eq-htpy f g = is-equiv-is-invertible htpy-eq is-retraction-eq-htpy' is-section-eq-htpy abstract is-retraction-eq-htpy : {f g : (x : A) → B x} → is-retraction (htpy-eq {f = f} {g}) eq-htpy is-retraction-eq-htpy {f} {g} = is-retraction-map-inv-is-equiv (funext f g) eq-htpy-refl-htpy : (f : (x : A) → B x) → eq-htpy (refl-htpy {f = f}) = refl eq-htpy-refl-htpy f = is-retraction-eq-htpy refl equiv-eq-htpy : {f g : (x : A) → B x} → (f ~ g) ≃ (f = g) pr1 (equiv-eq-htpy {f} {g}) = eq-htpy pr2 (equiv-eq-htpy {f} {g}) = is-equiv-eq-htpy f g ``` ### Function extensionality for implicit functions ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : {x : A} → B x} where equiv-funext-implicit : (Id {A = {x : A} → B x} f g) ≃ ((x : A) → f {x} = g {x}) equiv-funext-implicit = equiv-funext ∘e equiv-ap equiv-explicit-implicit-Π f g htpy-eq-implicit : Id {A = {x : A} → B x} f g → (x : A) → f {x} = g {x} htpy-eq-implicit = map-equiv equiv-funext-implicit funext-implicit : is-equiv htpy-eq-implicit funext-implicit = is-equiv-map-equiv equiv-funext-implicit eq-htpy-implicit : ((x : A) → f {x} = g {x}) → Id {A = {x : A} → B x} f g eq-htpy-implicit = map-inv-equiv equiv-funext-implicit ``` ## Properties ### `htpy-eq` preserves concatenation of identifications ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} where htpy-eq-concat : (p : f = g) (q : g = h) → htpy-eq (p ∙ q) = htpy-eq p ∙h htpy-eq q htpy-eq-concat refl refl = refl ``` ### `eq-htpy` preserves concatenation of homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} where eq-htpy-concat-htpy : (H : f ~ g) (K : g ~ h) → eq-htpy (H ∙h K) = (eq-htpy H ∙ eq-htpy K) eq-htpy-concat-htpy H K = ( ap ( eq-htpy) ( inv (ap-binary _∙h_ (is-section-eq-htpy H) (is-section-eq-htpy K)) ∙ inv (htpy-eq-concat (eq-htpy H) (eq-htpy K)))) ∙ ( is-retraction-eq-htpy (eq-htpy H ∙ eq-htpy K)) ``` ### `htpy-eq` preserves inverses For any two functions `f g : (x : A) → B x` we have a [commuting square](foundation-core.commuting-squares-of-maps.md) ```text inv (f = g) ---------> (g = f) | | htpy-eq | | htpy-eq ∨ ∨ (f ~ g) ---------> (g ~ f). inv-htpy ``` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} where compute-htpy-eq-inv : inv-htpy {f = f} {g} ∘ htpy-eq ~ htpy-eq ∘ inv compute-htpy-eq-inv refl = refl compute-inv-htpy-htpy-eq : htpy-eq ∘ inv ~ inv-htpy {f = f} {g} ∘ htpy-eq compute-inv-htpy-htpy-eq = inv-htpy compute-htpy-eq-inv ``` ### `eq-htpy` preserves inverses For any two functions `f g : (x : A) → B x` we have a commuting square ```text inv-htpy (f ~ g) ---------> (g ~ f) | | eq-htpy | | eq-htpy ∨ ∨ (f = g) ---------> (g = f). inv ``` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} where compute-eq-htpy-inv-htpy : inv ∘ eq-htpy ~ eq-htpy ∘ inv-htpy {f = f} {g} compute-eq-htpy-inv-htpy H = ( inv (is-retraction-eq-htpy _)) ∙ ( inv (ap eq-htpy (compute-htpy-eq-inv (eq-htpy H))) ∙ ap (eq-htpy ∘ inv-htpy) (is-section-eq-htpy _)) compute-inv-eq-htpy : eq-htpy ∘ inv-htpy {f = f} {g} ~ inv ∘ eq-htpy compute-inv-eq-htpy = inv-htpy compute-eq-htpy-inv-htpy ``` ## See also - The fact that the univalence axiom implies function extensionality is proven in [`foundation.univalence-implies-function-extensionality`](foundation.univalence-implies-function-extensionality.md). - Weak function extensionality is defined in [`foundation.weak-function-extensionality`](foundation.weak-function-extensionality.md). - Transporting along homotopies is defined in [`foundation.transport-along-homotopies`](foundation.transport-along-homotopies.md).