# Functoriality of dependent function types ```agda module foundation-core.functoriality-dependent-function-types where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.implicit-function-types open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.families-of-equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.type-theoretic-principle-of-choice ``` </details> ## Properties ### The operation `map-Π` preserves homotopies ```agda htpy-map-Π : {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {f f' : (i : I) → A i → B i} (H : (i : I) → (f i) ~ (f' i)) → map-Π f ~ map-Π f' htpy-map-Π H h = eq-htpy (λ i → H i (h i)) htpy-map-Π' : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {J : UU l4} (α : J → I) {f f' : (i : I) → A i → B i} → ((i : I) → (f i) ~ (f' i)) → map-Π' α f ~ map-Π' α f' htpy-map-Π' α H = htpy-map-Π (H ∘ α) ``` ### The fibers of `map-Π` ```agda compute-fiber-map-Π : {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} (f : (i : I) → A i → B i) (h : (i : I) → B i) → ((i : I) → fiber (f i) (h i)) ≃ fiber (map-Π f) h compute-fiber-map-Π f h = equiv-tot (λ _ → equiv-eq-htpy) ∘e distributive-Π-Σ compute-fiber-map-Π' : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {J : UU l4} (α : J → I) (f : (i : I) → A i → B i) (h : (j : J) → B (α j)) → ((j : J) → fiber (f (α j)) (h j)) ≃ fiber (map-Π' α f) h compute-fiber-map-Π' α f = compute-fiber-map-Π (f ∘ α) ``` ### Families of equivalences induce equivalences of dependent function types ```agda abstract is-equiv-map-Π-is-fiberwise-equiv : {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {f : (i : I) → A i → B i} → is-fiberwise-equiv f → is-equiv (map-Π f) is-equiv-map-Π-is-fiberwise-equiv is-equiv-f = is-equiv-is-contr-map ( λ g → is-contr-equiv' _ ( compute-fiber-map-Π _ g) ( is-contr-Π (λ i → is-contr-map-is-equiv (is-equiv-f i) (g i)))) equiv-Π-equiv-family : {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} (e : (i : I) → A i ≃ B i) → ((i : I) → A i) ≃ ((i : I) → B i) pr1 (equiv-Π-equiv-family e) = map-Π (λ i → map-equiv (e i)) pr2 (equiv-Π-equiv-family e) = is-equiv-map-Π-is-fiberwise-equiv (λ i → is-equiv-map-equiv (e i)) ``` ### Families of equivalences induce equivalences of implicit dependent function types ```agda is-equiv-map-implicit-Π-is-fiberwise-equiv : {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {f : (i : I) → A i → B i} → is-fiberwise-equiv f → is-equiv (map-implicit-Π f) is-equiv-map-implicit-Π-is-fiberwise-equiv is-equiv-f = is-equiv-comp _ _ ( is-equiv-explicit-implicit-Π) ( is-equiv-comp _ _ ( is-equiv-map-Π-is-fiberwise-equiv is-equiv-f) ( is-equiv-implicit-explicit-Π)) equiv-implicit-Π-equiv-family : {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} (e : (i : I) → (A i) ≃ (B i)) → ({i : I} → A i) ≃ ({i : I} → B i) equiv-implicit-Π-equiv-family e = ( equiv-implicit-explicit-Π) ∘e ( equiv-Π-equiv-family e) ∘e ( equiv-explicit-implicit-Π) ``` ##### Computing the inverse of `equiv-Π-equiv-family` ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} where compute-inv-equiv-Π-equiv-family : (e : (x : A) → B x ≃ C x) → ( map-inv-equiv (equiv-Π-equiv-family e)) ~ ( map-equiv (equiv-Π-equiv-family (λ x → inv-equiv (e x)))) compute-inv-equiv-Π-equiv-family e f = is-injective-equiv ( equiv-Π-equiv-family e) ( ( is-section-map-inv-equiv (equiv-Π-equiv-family e) f) ∙ ( eq-htpy (λ x → inv (is-section-map-inv-equiv (e x) (f x))))) ``` ## See also - Arithmetical laws involving dependent function types are recorded in [`foundation.type-arithmetic-dependent-function-types`](foundation.type-arithmetic-dependent-function-types.md). - Equality proofs in dependent function types are characterized in [`foundation.equality-dependent-function-types`](foundation.equality-dependent-function-types.md). - Functorial properties of function types are recorded in [`foundation.functoriality-function-types`](foundation.functoriality-function-types.md). - Functorial properties of dependent pair types are recorded in [`foundation.functoriality-dependent-pair-types`](foundation.functoriality-dependent-pair-types.md). - Functorial properties of cartesian product types are recorded in [`foundation.functoriality-cartesian-product-types`](foundation.functoriality-cartesian-product-types.md).